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This study analyzed elastic stresses in a rotating cylinder consisting of carbon fiber 

material using analytical methods and machine learning techniques. Elastic stress 

ranges were determined according to the Von Mises yield criterion, which provided 

a comprehensive understanding of the material's behavior under rotational loads. 

The analytical results were validated and improved through machine learning-based 

predictions, demonstrating the potential of these approaches in stress analysis. The 

results are presented graphically for clarity and comparison. The study emphasizes 

that there is an inverse relationship between the rotational speed parameter and the 

elastic stress that occurs inside the cylinder. These findings contribute to 

understanding stress behavior in high-performance composite materials but also 

demonstrate the effectiveness of machine learning in predicting stress distributions 

for complex engineering. 
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1. Introduction 
 

Cylinders are extensively utilized in mechanical components due to their geometric efficiency and 

functional advantages. Rotating cylinders of various sizes form essential parts of numerous 

mechanical systems, necessitating accurate evaluation of the stresses and deformations they 
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experience, particularly under high-temperature conditions. Understanding stress distributions in 

these components is crucial for ensuring structural integrity, enhancing operational efficiency, and 

extending service life. The literature indicates substantial progress in analyzing stresses and 

deformations in rotating components. For instance,  

 

In recent years, research on plastic deformation of rotating discs has focused on aluminum-based 

dispersion-hardened alloys. For example, Matvienko et al. (2023) used mechanical tensile tests and 

optical microscopy methods in their study examining the elastoplastic deformation of rotating discs 

made of aluminum dispersion-hardened alloys. The study provides a current perspective in 

understanding the plastic deformation behavior of rotating disks [1]. Similarly, Tutuncu and Ozturk 

developed a general solution for stress analysis in functionally graded material (FGM) disks, 

highlighting the benefits of graded materials in reducing stress concentrations [2]. Eraslan and Orcan 

extended these findings by investigating elastic–plastic deformations in solid disks with variable 

thickness under external pressure, offering a deeper understanding of the structural response under 

varying load conditions [3]. Tutuncu and Temel (2009) propose a novel approach for the stress 

analysis of pressurized functionally graded material (FGM) cylinders, disks, and spheres while Gao 

and Meguid demonstrated the effects of material gradients on stress distributions in rotating disks 

[5]. Pooja Rani and Kuldip Singh (2024) investigated the thermoelastic stresses in a functionally 

graded annular rotating disc subjected to internal and external pressure. The study assumes that the 

material properties, including elasticity modulus, thermal conductivity, thermal expansion 

coefficient, and density, vary radially based on three distinct power-law functions, while Poisson’s 

ratio remains constant [6]. Akbari and Ghanbari (2019) developed an analytical exact solution for 

functionally graded rotating disks subjected to non-symmetric thermal and mechanical loads. Their 

study provides a detailed analysis of stress distribution, considering material property variations, and 

offers insights into the behavior of such disks under complex loading conditions [7]. Additionally, Akis 

and Tekkaya examined stress and deformation in functionally graded hollow cylinders subjected to 

internal pressure, enhancing the understanding of FGM behavior in pressurized systems [8]. Recent 

research has focused on specific applications of rotating disks under thermomechanical loading. 

Nayak and Saha analyzed the elastic limit angular speeds of solid and annular disks, identifying key 

parameters influencing their strength [9]. Lin conducted an elastic analysis of rotating annular disks 

made from FGMs with exponentially varying profiles, addressing scenarios where material properties 

change non-linearly [10]. Numerical analyses by Kayiran assessed the mechanical performance of 

composite disks based on carbon-aramid/epoxy materials under different loading conditions [11], 

while Kayiran explored displacements in circular disks composed of various materials, emphasizing 

their implications for material selection and design [12]. Building on these studies, the current 

research focuses on the stress analysis of rotating cylinders composed of carbon fiber, a high-

performance composite material known for its superior strength-to-weight ratio and thermal 

resistance. Stresses are examined using both analytical methods and machine learning techniques, 
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particularly artificial neural networks (ANNs), which have been shown to solve complex engineering 

problems effectively. ANN predictions complement analytical results, offering rapid and accurate 

stress assessments.  This approach bridges the gap between traditional analytical methods and 

advanced computational techniques, delivering a comprehensive understanding of stress behavior 

in carbon fiber cylinders under rotational loads. The mechanical properties of carbon fiber used in 

the analysis are detailed in Table 1, ensuring precise material characterization. Carbon fiber was 

selected as the most appropriate material for the application due to its exceptional properties.The 

study investigates the solitary wave solutions for various versions of the fractional 3D-Wazwaz-

Benjamin-Bona-Mahony (WBBM) equations, emphasizing the role of fractional derivatives in 

capturing complex wave phenomena. In a different study, a non-self-adjoint quadratic pencil 

problem with periodic boundary conditions is considered. The linearly independent solutions of the 

problem have been determined, and the asymptotic formulas for the eigenvalues and eigenfunctions 

have been provided [13-14] 

1.2. Literature Review Section  

Machine learning (ML) and artificial intelligence (AI) are increasingly transforming mechanical 

engineering and machine systems. These technologies enhance efficiency, reduce costs, and 

minimize errors in engineering processes. Today, ML and AI methods are widely adopted in 

production, maintenance, design, optimization, and material development [15]. ML-powered 

predictive maintenance systems enable early detection of faults by continuously monitoring 

industrial machines. Through big data analytics and sensor-based monitoring, maintenance 

operations become more efficient, leading to significant cost savings for businesses [16].  For 

instance, smart manufacturing systems optimize production lines by leveraging deep learning and 

neural networks, continuously improving processes [17]. Baduge et al. (2022) provide a 

comprehensive review of AI, ML, and DL applications in Building and Construction 4.0, covering areas 

such as architectural design, material optimization, structural analysis, automation, and smart 

building operations. The study also discusses data collection, processing, storage, challenges in model 

development, and future research directions [18]. This approach increases the efficiency of 

production systems while providing more accurate and reliable design processes [19]. Machine 

learning also plays a crucial role in the development of next-generation materials. Compared to 

traditional material engineering methods, ML algorithms predict mechanical properties faster and 

more accurately, optimizing experimental processes [20].  For example, the durability of composite 

materials and their resistance to environmental effects can be assessed more accurately through AI-

driven analyses [21]. AI is also contributing to energy efficiency and sustainable manufacturing. Smart 

energy management systems optimize factory operations, reducing energy consumption and 

promoting sustainability [22].  AI-based systems reduce manufacturing defects, minimize waste, and 

contribute to eco-friendly production methods [23]. Furthermore, ML algorithms are applied to solve 

optimization problems in mechanical system design. AI-driven engineering solutions assist engineers 

in making more effective design decisions, resulting in more efficient and durable systems [24].  For 
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instance, AI optimizes aerodynamic analyses and fluid dynamics calculations, leading to faster and 

more precise results [25]. In conclusion, AI and ML offer a broad range of applications in mechanical 

engineering. These technologies enhance efficiency in manufacturing, improve fault prediction and 

maintenance, accelerate material science innovations, and support sustainable manufacturing 

solutions. The impact of AI and ML on engineering disciplines is expected to grow in the coming years, 

paving the way for smarter, more autonomous industrial systems [26-27-28-29].  There are also 

different types of machine learning. These species are given as an example in Figure 1 below. 

 

Fig 1. Demonstration of the types of machine learning [18]. 

2. Material and Method 

The numerical results obtained in this study are provided in the formula below: 

Two-dimensional equilibrium equation in cylindrical coordinates [30]; 

 

For the stress analysis equation in rotating cylinders; 

                       (2) 
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Radial Displacement U(r); 

  

According to the formulas above; r=et transformation is performed, , modulus of elasticity ,  

density reference value, n and γ are optional constants.C1 and C2 are integral constants. For boundary 

conditions; 

The mechanical properties of carbon fiber are provided in Table 1 below. 

Table 1. Mechanical properties of carbon fiber cylinder material [31]. 

 
 Modulus of 

elasticity  
(Gpa)) 

Angular velocity 
(rad/sn) 

Density 
(kg/m3) 

Inner half 
diameter 

(mm) 

Outer half 
diameter (mm) 

 228 50 1600 60 120 
      

 
 Results  
 
In this study, radial stress, tangential stress and radial displacement were calculated by numerical 
analysis in a cylinder with carbon fiber material, whose mechanical properties are specified in Table 
1 above, rotating at an angular velocity of 50 rad/sec, and the tangential stress results were 
compared with machine learning, which is a sub-branch of artificial intelligence. The results obtained 
are shared below with graphs. Below, in Figures 2a and 2b, the tangential and radial stresses obtained 
at the end of the numerical analysis are given. 
 

                
 

                                                             (a) (Tangential Stress)                             (b) (Radial Stress) 

Fig. 2.Determination of tangential and radial stresses occurring in a carbon fiber disk rotating 
at 50 rad/sec 
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The radial stress distribution shows a significant variation across the radius of the disk. The stress 

increases from the inner radius (r/r0≈0.6) to the outer radius (r/r0=1) and then slightly decreases 

beyond the outer radius (r/r0>1). The magnitude of σr is strongly influenced by the parameter n, For 

n=−1, the radial stress reaches its maximum values throughout the disk. As n increases to n=1n = 

1n=1, the overall magnitude of radial stress decreases, particularly at the inner radius. The tangential 

stress exhibits different behaviors depending on the parameter n; For n=−1, the tangential stress 

remains nearly constant and close to zero across the disk radius. As n increases, the tangential stress 

transitions from tensile at the inner radius to compressive near and beyond the outer radius (r/r0>1). 

The shift becomes more pronounced for higher n values, with n=1 exhibiting the largest tensile and 

compressive stress gradients. Radial Stress: The maximum radial stress occurs near the outer radius, 

and its magnitude decreases as n increases. Tangential Stress: Higher n values result in a significant 

shift from tensile to compressive stresses, highlighting the influence of material properties or loading 

conditions on the stress distribution. The radial displacement graph is given in Figure 3 below. 

                                    Fig. 3.Determination of radial displacement occurring in a carbon fiber disk 
rotating at 50 rad/sec 
 
Şekil 3’den görüleceği üzere; For n=−1, the radial displacement remains constant and close to 
zero throughout the disk. This indicates minimal deformation in this condition.As n increases 
towards n=1n = 1n=1, the radial displacement becomes significantly larger in magnitude, showing 
both positive (outward displacement) and negative (inward displacement) values. At r/r0≈1 
(outer radius), the displacement trends converge near zero, indicating equilibrium or minimal 
deformation at this point. For n>0, the displacement shifts predominantly outward (u>0), 
whereas for n<0, it becomes inward (u<0). Larger n values (e.g., n=1) result in the highest 
displacement magnitudes, reflecting greater material deformation due to changes in stress 
distribution and mechanical properties. 
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Figure 4 below shows the training, validation and test datasets of the Machine Learning model. 
 

 
Fig. 4.Mean square error (MSE) for training, validation and test datasets  

 

The best performance in the validation set was achieved at the 13th epoch, so training the model 
can be terminated from this point on. This is thought to be an efficient choice in terms of both 
time and resources.Figure 4 shows that the model achieved the best balance between training 
and generalization in the 13th period, with minimum validation and test error. Below is the 
training and validation data in Figure 5. 
 

 
                                         (a) (Traning and validation data)                                (b) (Traning and validation data)  

 
Fig. 5.Relationship between the output of the model (predicted values) and the target values for both the 

training and validation datasets 
 

As can be seen from Figure 5, there is minimal deviation from the ideal line in the graphs in 4a and 

4b, indicating that the model achieves high accuracy and exhibits little over or under learning. The 

graph above shows the training (blue dots) and validation (green dots) datasets generated. Additionally, 

the dashed black line Y=TY = TY=T represents the ideal linear relationship. The graph shows that 

both data sets generally produce predictions close to the target. The model performed strongly on the 
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training and validation datasets, producing accurate results with a low error rate.Comparison of 

tangential stress results with numerical analysis and Machine learning is given in Figure 6 below. 

 

 
Fig 6.Comparison of tangential stress results with numerical analysis and Machine learning 

 

As can be seen from Figure 5;Tangential Stress Behavior (for n = -1: The tangential stress remains 
constant and close to zero, which indicates the minimum stress along the radius. ( for n > -1): The 
tangential voltage decreases linearly, starting higher at the inner radius ( r / r0 < 1 ). Then it becomes 
negative (pressure voltage) at (r / r0 > 1 ).At higher (n) values, for example, for n = 1, it exhibits the 
largest stress gradients by switching more sharply from higher tensile stresses to compressive 
stresses. Lower (n) values indicate, for example, a reduced stress change ( n = -1 ) and a minimal 
effect on material deformation. In the graph above, the red dashed line shows ( r/r0 = 1 ) and shows 
the outer radius through which the voltage behavior transitions. The green dashed line highlights the 
best period error by providing a verification point for numerical accuracy. In general, the tangential 
voltage distribution reveals the sensitivity of the voltage behavior to the parameter (n). Higher (n) 
values lead to significant tensile and compressive stress changes, while lower (n) values lead to more 
uniform stress distributions. This analysis is included in the literature as very important for the design 
of carbon fiber materials to ensure structural stability under certain processes. 
 
4. Conclusions 
 
In this study, the stresses occurring in a cylinder with carbon fiber material rotating at a hungry speed 
of w=50 rad/sec were numerically investigated. Carbon fiber radial stresses on the innermost and 
outermost parts of the cylinder are zero. It was seen that the stresses were inversely proportional to 
the increase in the rating parameter in the cylinders. For n=−1, the maximum tangential stress (σθ) 
is in the region of r/r0=0.6. However, since the tangential stress is σθ=0, it is 100% lower compared 
to the radial stress. This shows that the tangential stress creates a negative difference compared to 
the radial stress. It has been concluded that the training set created with artificial neural networks, 
which is a sub-branch of artificial intelligence, for the tangential stresses occurring in the cylinder can 
be compatible with the numerical analysis results. The anisotropic properties of carbon fiber 
significantly affect the tangential stress distribution depending on the value of n. The best verification 
performance (13th epoch) was successfully demonstrated on r/r0 and the error value was proven to 
be low. 
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