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Keywords:
The analytical results were validated and improved through machine learning-based
predictions, demonstrating the potential of these approaches in stress analysis. The
results are presented graphically for clarity and comparison. The study emphasizes

Machine learning, stress analysis, that there is an inverse relationship between the rotational speed parameter and the

cylinders elastic stress that occurs inside the cylinder. These findings contribute to
understanding stress behavior in high-performance composite materials but also
demonstrate the effectiveness of machine learning in predicting stress distributions

for complex engineering.

1. Introduction

Cylinders are extensively utilized in mechanical components due to their geometric efficiency and
functional advantages. Rotating cylinders of various sizes form essential parts of numerous
mechanical systems, necessitating accurate evaluation of the stresses and deformations they
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experience, particularly under high-temperature conditions. Understanding stress distributions in
these components is crucial for ensuring structural integrity, enhancing operational efficiency, and
extending service life. The literature indicates substantial progress in analyzing stresses and
deformations in rotating components. For instance,

In recent years, research on plastic deformation of rotating discs has focused on aluminum-based
dispersion-hardened alloys. For example, Matvienko et al. (2023) used mechanical tensile tests and
optical microscopy methods in their study examining the elastoplastic deformation of rotating discs
made of aluminum dispersion-hardened alloys. The study provides a current perspective in
understanding the plastic deformation behavior of rotating disks [1]. Similarly, Tutuncu and Ozturk
developed a general solution for stress analysis in functionally graded material (FGM) disks,
highlighting the benefits of graded materials in reducing stress concentrations [2]. Eraslan and Orcan
extended these findings by investigating elastic—plastic deformations in solid disks with variable
thickness under external pressure, offering a deeper understanding of the structural response under
varying load conditions [3]. Tutuncu and Temel (2009) propose a novel approach for the stress
analysis of pressurized functionally graded material (FGM) cylinders, disks, and spheres while Gao
and Meguid demonstrated the effects of material gradients on stress distributions in rotating disks
[5]. Pooja Rani and Kuldip Singh (2024) investigated the thermoelastic stresses in a functionally
graded annular rotating disc subjected to internal and external pressure. The study assumes that the
material properties, including elasticity modulus, thermal conductivity, thermal expansion
coefficient, and density, vary radially based on three distinct power-law functions, while Poisson’s
ratio remains constant [6]. Akbari and Ghanbari (2019) developed an analytical exact solution for
functionally graded rotating disks subjected to non-symmetric thermal and mechanical loads. Their
study provides a detailed analysis of stress distribution, considering material property variations, and
offers insights into the behavior of such disks under complex loading conditions [7]. Additionally, Akis
and Tekkaya examined stress and deformation in functionally graded hollow cylinders subjected to
internal pressure, enhancing the understanding of FGM behavior in pressurized systems [8]. Recent
research has focused on specific applications of rotating disks under thermomechanical loading.
Nayak and Saha analyzed the elastic limit angular speeds of solid and annular disks, identifying key
parameters influencing their strength [9]. Lin conducted an elastic analysis of rotating annular disks
made from FGMs with exponentially varying profiles, addressing scenarios where material properties
change non-linearly [10]. Numerical analyses by Kayiran assessed the mechanical performance of
composite disks based on carbon-aramid/epoxy materials under different loading conditions [11],
while Kayiran explored displacements in circular disks composed of various materials, emphasizing
their implications for material selection and design [12]. Building on these studies, the current
research focuses on the stress analysis of rotating cylinders composed of carbon fiber, a high-
performance composite material known for its superior strength-to-weight ratio and thermal
resistance. Stresses are examined using both analytical methods and machine learning techniques,
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particularly artificial neural networks (ANNs), which have been shown to solve complex engineering
problems effectively. ANN predictions complement analytical results, offering rapid and accurate
stress assessments. This approach bridges the gap between traditional analytical methods and
advanced computational techniques, delivering a comprehensive understanding of stress behavior
in carbon fiber cylinders under rotational loads. The mechanical properties of carbon fiber used in
the analysis are detailed in Table 1, ensuring precise material characterization. Carbon fiber was
selected as the most appropriate material for the application due to its exceptional properties.The
study investigates the solitary wave solutions for various versions of the fractional 3D-Wazwaz-
Benjamin-Bona-Mahony (WBBM) equations, emphasizing the role of fractional derivatives in
capturing complex wave phenomena. In a different study, a non-self-adjoint quadratic pencil
problem with periodic boundary conditions is considered. The linearly independent solutions of the
problem have been determined, and the asymptotic formulas for the eigenvalues and eigenfunctions
have been provided [13-14]

1.2. Literature Review Section

Machine learning (ML) and artificial intelligence (Al) are increasingly transforming mechanical
engineering and machine systems. These technologies enhance efficiency, reduce costs, and
minimize errors in engineering processes. Today, ML and Al methods are widely adopted in
production, maintenance, design, optimization, and material development [15]. ML-powered
predictive maintenance systems enable early detection of faults by continuously monitoring
industrial machines. Through big data analytics and sensor-based monitoring, maintenance
operations become more efficient, leading to significant cost savings for businesses [16]. For
instance, smart manufacturing systems optimize production lines by leveraging deep learning and
neural networks, continuously improving processes [17]. Baduge et al. (2022) provide a
comprehensive review of Al, ML, and DL applications in Building and Construction 4.0, covering areas
such as architectural design, material optimization, structural analysis, automation, and smart
building operations. The study also discusses data collection, processing, storage, challenges in model
development, and future research directions [18]. This approach increases the efficiency of
production systems while providing more accurate and reliable design processes [19]. Machine
learning also plays a crucial role in the development of next-generation materials. Compared to
traditional material engineering methods, ML algorithms predict mechanical properties faster and
more accurately, optimizing experimental processes [20]. For example, the durability of composite
materials and their resistance to environmental effects can be assessed more accurately through Al-
driven analyses [21]. Al is also contributing to energy efficiency and sustainable manufacturing. Smart
energy management systems optimize factory operations, reducing energy consumption and
promoting sustainability [22]. Al-based systems reduce manufacturing defects, minimize waste, and
contribute to eco-friendly production methods [23]. Furthermore, ML algorithms are applied to solve
optimization problems in mechanical system design. Al-driven engineering solutions assist engineers
in making more effective design decisions, resulting in more efficient and durable systems [24]. For
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instance, Al optimizes aerodynamic analyses and fluid dynamics calculations, leading to faster and
more precise results [25]. In conclusion, Al and ML offer a broad range of applications in mechanical
engineering. These technologies enhance efficiency in manufacturing, improve fault prediction and
maintenance, accelerate material science innovations, and support sustainable manufacturing
solutions. The impact of Al and ML on engineering disciplines is expected to grow in the coming years,

paving the way for smarter, more autonomous industrial systems [26-27-28-29].

There are also

different types of machine learning. These species are given as an example in Figure 1 below.
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Fig 1. Demonstration of the types of machine learning [18].

2. Material and Method

The numerical results obtained in this study are provided in the formula below:

Two-dimensional equilibrium equation in cylindrical coordinates [30];
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For the stress analysis equation in rotating cylinders;
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According to the formulas above; r=et transformation is performed, Eﬂ, modulus of elasticity , Po

density reference value, n and y are optional constants.C1 and C2 are integral constants. For boundary

conditions;

The mechanical properties of carbon fiber are provided in Table 1 below.

Table 1. Mechanical properties of carbon fiber cylinder material [31].

Modulus of Angular velocity Density Inner half Outer half

elasticity (rad/sn) (kg/m3) diameter diameter (mm)
(Gpa)) (mm)

228 50 1600 60 120

Results

In this study, radial stress, tangential stress and radial displacement were calculated by numerical
analysis in a cylinder with carbon fiber material, whose mechanical properties are specified in Table
1 above, rotating at an angular velocity of 50 rad/sec, and the tangential stress results were
compared with machine learning, which is a sub-branch of artificial intelligence. The results obtained
are shared below with graphs. Below, in Figures 2a and 2b, the tangential and radial stresses obtained
at the end of the numerical analysis are given.

Tangential Stress (o heta) for Carbon Fiber Material
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Fig. 2.Determination of tangential and radial stresses occurring in a carbon fiber disk rotating
at 50 rad/sec
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The radial stress distribution shows a significant variation across the radius of the disk. The stress
increases from the inner radius (r/r0=0.6) to the outer radius (r/rO=1) and then slightly decreases
beyond the outer radius (r/r0>1). The magnitude of or is strongly influenced by the parameter n, For
n=-1, the radial stress reaches its maximum values throughout the disk. As n increases to n=1n =
1n=1, the overall magnitude of radial stress decreases, particularly at the inner radius. The tangential
stress exhibits different behaviors depending on the parameter n; For n=-1, the tangential stress
remains nearly constant and close to zero across the disk radius. As n increases, the tangential stress
transitions from tensile at the inner radius to compressive near and beyond the outer radius (r/r0>1).
The shift becomes more pronounced for higher n values, with n=1 exhibiting the largest tensile and
compressive stress gradients. Radial Stress: The maximum radial stress occurs near the outer radius,
and its magnitude decreases as n increases. Tangential Stress: Higher n values result in a significant
shift from tensile to compressive stresses, highlighting the influence of material properties or loading

conditions on the stress distribution. The radial displacement graph is given in Figure 3 below.
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Fig. 3.Determination of radial displacement occurring in a carbon fiber disk
rotating at 50 rad/sec

Sekil 3'den gorilecegi lizere; For n=-1, the radial displacement remains constant and close to
zero throughout the disk. This indicates minimal deformation in this condition.As n increases
towards n=1n = 1n=1, the radial displacement becomes significantly larger in magnitude, showing
both positive (outward displacement) and negative (inward displacement) values. At r/r0=1
(outer radius), the displacement trends converge near zero, indicating equilibrium or minimal
deformation at this point. For n>0, the displacement shifts predominantly outward (u>0),
whereas for n<0, it becomes inward (u<0). Larger n values (e.g., n=1) result in the highest
displacement magnitudes, reflecting greater material deformation due to changes in stress
distribution and mechanical properties.
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Figure 4 below shows the training, validation and test datasets of the Machine Learning model.

Best Validation Performance is 0.0001964 at epoch 13
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Fig. 4.Mean square error (MSE) for training, validation and test datasets

The best performance in the validation set was achieved at the 13th epoch, so training the model
can be terminated from this point on. This is thought to be an efficient choice in terms of both
time and resources.Figure 4 shows that the model achieved the best balance between training
and generalization in the 13th period, with minimum validation and test error. Below is the
training and validation data in Figure 5.
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Fig. 5.Relationship between the output of the model (predicted values) and the target values for both the
training and validation datasets

As can be seen from Figure 5, there is minimal deviation from the ideal line in the graphs in 4a and
4b, indicating that the model achieves high accuracy and exhibits little over or under learning. The
graph above shows the training (blue dots) and validation (green dots) datasets generated. Additionally,
the dashed black line Y=TY = TY=T represents the ideal linear relationship. The graph shows that
both data sets generally produce predictions close to the target. The model performed strongly on the
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training and validation datasets, producing accurate results with a low error rate.Comparison of
tangential stress results with numerical analysis and Machine learning is given in Figure 6 below.

Tangential Stress (o8) for Carbon Fiber Material with Numerical Analysis
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Fig 6.Comparison of tangential stress results with numerical analysis and Machine learning

As can be seen from Figure 5;Tangential Stress Behavior (for n = -1: The tangential stress remains
constant and close to zero, which indicates the minimum stress along the radius. ( for n > -1): The
tangential voltage decreases linearly, starting higher at the inner radius (r /r0 < 1). Then it becomes
negative (pressure voltage) at (r / rO > 1 ).At higher (n) values, for example, for n = 1, it exhibits the
largest stress gradients by switching more sharply from higher tensile stresses to compressive
stresses. Lower (n) values indicate, for example, a reduced stress change ( n = -1 ) and a minimal
effect on material deformation. In the graph above, the red dashed line shows ( r/r0 = 1) and shows
the outer radius through which the voltage behavior transitions. The green dashed line highlights the
best period error by providing a verification point for numerical accuracy. In general, the tangential
voltage distribution reveals the sensitivity of the voltage behavior to the parameter (n). Higher (n)
values lead to significant tensile and compressive stress changes, while lower (n) values lead to more
uniform stress distributions. This analysis is included in the literature as very important for the design
of carbon fiber materials to ensure structural stability under certain processes.

4. Conclusions

In this study, the stresses occurring in a cylinder with carbon fiber material rotating at a hungry speed
of w=50 rad/sec were numerically investigated. Carbon fiber radial stresses on the innermost and
outermost parts of the cylinder are zero. It was seen that the stresses were inversely proportional to
the increase in the rating parameter in the cylinders. For n=-1, the maximum tangential stress (c0)
is in the region of r/r0=0.6. However, since the tangential stress is 60=0, it is 100% lower compared
to the radial stress. This shows that the tangential stress creates a negative difference compared to
the radial stress. It has been concluded that the training set created with artificial neural networks,
which is a sub-branch of artificial intelligence, for the tangential stresses occurring in the cylinder can
be compatible with the numerical analysis results. The anisotropic properties of carbon fiber
significantly affect the tangential stress distribution depending on the value of n. The best verification
performance (13th epoch) was successfully demonstrated on r/r0 and the error value was proven to
be low.
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