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The aim of this study is to develop a fuzzy MCDM based framework for 
security management in smart cities. The study focuses on the assessment of 
security risks and the selection of appropriate security measures. To address 
the uncertainties and complexities in the assessment of security risks and 
measures, this research employs two different fuzzy methods: weighting the 
risk factors using the Fuzzy weight by envelope and slope (F-WENSLO) 
method and selecting the most appropriate security measures using the Fuzzy 
Ranking Alternatives with Weights of Criterion (F-RAWEC) method. The 
proposed approach is applied to a case study on identifying and assessing 
potential security risks in a smart city infrastructure. The risk factors used in 
the study are identified as flash floods, traffic accidents and transportation 
security, robbery and public safety threats, cybersecurity threats, health 
crises and pandemics, and energy infrastructure and outages. Security 
systems are defined as physical security systems, emergency response and 
crisis management systems, software and cybersecurity systems, monitoring 
and surveillance systems, and sensor-based early warning systems. The 
results show that physical security measures play a critical role in preventing 
and responding to incidents, while emergency response and crisis 
management systems perform less well. It is also stated that software and 
cybersecurity systems provide an effective solution against digital threats, but 
their integration with other systems is important. The results show that the 
fuzzy-based model significantly increases the accuracy in prioritizing risks 
and provides a systematic method for selecting the most effective security 
measures. This study contributes to the literature by presenting an innovative 
decision-making tool for security management in smart cities. 
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1. Introduction 
 

Smart cities aim to make urban life more efficient, sustainable and secure with digital 
technologies, big data analytics and artificial intelligence-based solutions. However, the acceleration 
of urbanization and the spread of technological infrastructure also bring security threats [1]. Issues 
such as crime rate analysis, emergency management, traffic safety and public order protection are 
among the biggest security problems faced by smart cities [2,3]. 

 
* Corresponding author. 
E-mail address: gulaydemir@cumhuriyet.edu.tr 

 
https://doi.org/10.59543/kadsa.v1i.13701 

http://www.kadsa.org/


Knowledge and Decision Systems with Applications 

Volume 1, (2025) 70-91 

71 
 
 

 

Traditional security management approaches cannot fully adapt to dynamic and variable risk 
factors. Therefore, new methods that take uncertainties into account in security management and 
are supported by multi-criteria decision making (MCDM) techniques are needed. In this study, 
security risk factors in smart cities will be weighted using the F-WENSLO method and the most 
appropriate security measures will be determined with the F-RAWEC method. 

Fuzzy logic-based multi-criteria decision making (FMCDM) approaches aim to reduce the impact 
of uncertainties by providing decision makers with more flexible and adaptable analyses [4-6]. These 
approaches, unlike traditional decision-making methods, have the capacity to process uncertain and 
fuzzy data, allowing decision makers to approach complex problems more effectively and accurately 
[7]. FMCDM methods allow for more flexible evaluations between alternatives by taking into account 
the uncertainty of each criterion [8]. In this way, it allows for more robust and reliable results, 
especially in the evaluation of various risk factors and security measures. At the same time, it allows 
decision makers to make more consistent and understandable decisions even in cases where 
different views and information are combined [9,10]. In our study, a decision support model is 
proposed to determine the most appropriate strategies by analyzing different security factors. This 
model will guide security managers and city planners to better understand existing security threats 
and develop effective intervention strategies.  

Although various studies exist in the literature on assessing security risks and determining 
appropriate security measures, this research stands out by developing a novel decision support 
model that integrates the F-WENSLO and F-RAWEC methods. Specifically, the key contributions of 
this study to literature are as follows: 

✓ Methodological Innovation: This study provides a more robust and flexible approach to 
decision-making under uncertainty by dynamically weighting risk factors using the F-WENSLO 
method and selecting the most appropriate security measures using the F-RAWEC method. 
While traditional multi-criteria decision-making (MCDM) methods often rely on predefined or 
expert-derived weighting techniques, this study employs a performance-based dynamic 
weighting approach. 

✓  Integrated Security Management Model: While most existing studies in the literature focus 
on individual risk factors or specific security systems, this research conducts a holistic security 
assessment, analyzing various security risks that smart cities may encounter. The study 
comprehensively evaluates critical risk factors, including cybersecurity threats, traffic 
accidents, crime rates, natural disasters, energy outages, and health crises, alongside five 
different security measures: physical security, monitoring and surveillance, early warning 
systems, cybersecurity, and emergency response systems. 

✓ Real-World Application: A case study was conducted using a smart city scenario (MetroCity) 
to demonstrate how theoretical methods can be integrated into practical decision support 
processes. This application provides city administrators with a concrete decision-making tool. 
The findings indicate that physical security measures (SS1) play a crucial role, while 
emergency response systems (SS5) exhibit lower performance, offering important insights for 
policymakers. 

✓ Advancing the Use of Fuzzy MCDM: While previous studies on smart city security primarily 
rely on classical decision-making models that operate with precise data, this study adopts a 
fuzzy logic-based approach, enabling the management of uncertainty. This allows for greater 
flexibility in incorporating expert opinions and uncertain datasets into the decision-making 
process. 
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In conclusion, this research expands the existing literature by introducing a new methodological 
approach to risk management and security measure selection in smart cities. Additionally, it provides 
a data-driven, dynamic, and integrated security management model, offering valuable contributions 
to both academic research and practical applications. In the rest of this article, first of all, existing 
security management and FMCDM applications in the literature will be examined, then the proposed 
methodology will be detailed. Finally, the applicability of the model will be evaluated through a case 
study and the results will be discussed. 

 
2. Literature Review  
 

Security management in smart cities is a rapidly developing field, and the assessment of risks and 
selection of appropriate security measures are of great importance. In recent years, traditional 
security management methods have evolved to take into account the dynamic structure and data 
richness of smart cities [11]. While traditional MCDM techniques consider a large number of factors, 
fuzzy logic-based methods can better handle uncertainties and imprecise data. Fuzzy MCDM is used   
as an important tool in weighting risk factors and selecting security measures. Fuzzy logic offers 
security managers flexibility that allows them to make better decisions in uncertain environmental 
conditions [12]. Methods such as F-WENSLO and F-RAWEC are widely used in the processes of more 
accurate risk assessment and precaution selection. 

Security in smart cities is not limited to the protection of physical infrastructure. IoT (Internet of 
Things) technology provides critical data to optimize city security. While IoT-based sensors are used 
for early detection of security threats and risk assessment, FMCDM techniques make significant 
contributions in analyzing this data and selecting appropriate precautions [13]. In this context, studies 
in the field of security management in smart cities increasingly adopt the integration of IoT and 
FMCDM. 

In addition, studies conducted in recent years show that these methods are not only limited to 
security measures, but also provide efficient use of resources and reduced operational costs. These 
studies emphasize the importance of weighing risks and finding the most appropriate solutions for 
the correct selection of security measures. 

Smart cities are modern residential areas that aim to make services within the city more efficient 
by using advanced information and communication technologies. Studies on critical factors such as 
sustainability, security, energy efficiency and transportation are increasing in these cities. Most 
studies adopt MCDM methods and fuzzy logic-based approaches to solve various problems in cities. 
Such methods allow for more accurate management of uncertainty and unclear data. 

Fayyaz et al., [14] determined security as the most critical factor in the design of city streets for 
the integration of autonomous vehicles (AVs) and bicycles in smart cities by using a combination of 
interval-fuzzy multi-criteria decision making and game theory. The study emphasizes that green 
infrastructure and smart technology integration are optimal strategies, and these strategies help to 
provide a balance between bicycles and AVs, making the transportation system more efficient and 
sustainable. Similarly, Kaveh et al., [15] developed a strategic framework combining MCDM and 
mathematical optimization methods, considering sustainability, resilience and smart cities for 
disaster management. The study emphasized the importance of infrastructure, health centers, 
transportation networks in the pre-disaster preparation and risk reduction stages, and determined 
the most suitable locations and suppliers for optimal emergency preparedness. 

Various studies are also being conducted on environmental and energy efficiency issues. Otay et 
al., [16] used multi-expert interval-fuzzy BWM and TOPSIS methodology while evaluating sustainable 
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energy systems in smart cities. According to the results of the study, environmental sustainability 
criterion was determined as the most important criterion, and other factors such as energy 
technology investments and transportation systems were also listed. Chaurasiya and Jain [17] 
presented a hybrid MCDM framework to improve waste management in smart cities in developing 
countries such as India. In the study, they determined the most suitable IoT-based waste 
management technologies using Pythagorean fuzzy MEREC, SWARA and ARAS methods. 

Fuzzy logic and MCDM methods find application in many areas in smart cities due to their ability 
to manage uncertainties. Rani and Potika [18] developed a model that manages such uncertainties 
while assessing forest fire risks in smart cities. This model ranks the fire risk status of various cities 
using factors such as weather, vegetation and terrain characteristics. Makki and Alqahtani [19] 
studied the barriers in smart cities and used DEMATEL (Decision-Making Trial and Evaluation 
Laboratory) approach to overcome these barriers. In this study, factors such as technical problems, 
infrastructure deficiencies and high costs were identified as the main barriers and comprehensive 
strategies were proposed to solve these barriers. Maniratinam et al., [20] developed a new MCDM 
method to analyze user satisfaction for micro-mobility vehicles (e.g., electric scooters). This method 
includes evaluation criteria for increasing sustainable clean energy transportation in smart cities. The 
results of the study show that users evaluate the quality of micro-mobility services according to 
criteria such as accessibility, reliability, responsiveness and performance. 

The studies reveal the importance of MCDM and fuzzy logic approaches in the evaluation of 
various systems in smart cities, especially in sustainability, energy efficiency, security and 
transportation. These methods help cities to be managed efficiently while also managing 
uncertainties and complexities more effectively. 
 
3. Methodology  

 
This research aims to optimize the risk assessment and precaution selection processes by using 

FMCDM methods to improve security management in smart cities. The flow diagram describing the 
analysis process of the research is given in Figure 1. 
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Fig. 1. Flow chart 

At the end of these steps in Figure 1, security risk factors in smart cities are weighted, individual 
decisions are converted to a common result, and security systems are ranked according to the 
determined criteria. This process aims to optimize risk management in smart cities using FMCDM 
methods. 

 
3.1 Data Collection 
 

The data collection phase will be carried out to determine security risks in smart cities and the 
measures that can be taken against these risks. In this process, the existing literature on security 
measures in smart cities will be examined and data obtained from IoT (Internet of Things) based 
systems will be used. 

 
3.1.1 Security Risk Factors 
 

Security risk factors in smart cities are given in Table 1 with their explanations. 
Table 1.  
Security risk factors in smart cities 

Risk Factor Description References 

Cybersecurity Threats 
(RF1) 

The digital infrastructures of smart cities are vulnerable to 
cyber-attacks. Threats such as hacking, data breaches, and 
malware can damage city infrastructure and put citizens' 
personal information at risk. 

Chatterjee et al., [21]; 
Elmaghraby and Losavio, 
[22] 
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Traffic Accidents and 
Transportation Safety 
(RF2) 

Emerging technologies such as smart traffic management 
systems and autonomous vehicles may lead to traffic 
accidents. Infrastructure deficiencies or system failures can 
threaten traffic safety. 

Jagatheesaperumal et al., 
[23]; Adewopo et al., [24] 

Crime Rates and Public 
Safety (RF3) 

In smart cities, crime rates can be monitored through security 
cameras and facial recognition technology. However, these 
technologies can also be manipulated, leading to ethical 
concerns such as violations of personal privacy. 

Tutak and Brodny, [25]; 
O’Malley and Smith, [26] 

Natural Disasters 
(Earthquakes, Floods, 
Fires) (RF4) 

Early warning systems and sensors can monitor natural 
disasters, but large-scale disasters can destroy city 
infrastructure and increase security risks. 

Elvas et al., [27]; Nefros et 
al., [28] 

Energy Infrastructure 
and Power Outages 
(RF5) 

Disruptions in energy infrastructure can impact the city. 
Power outages pose a major security risk, especially for 
critical infrastructure, and can hinder the operation of other 
security measures in the city. 

Şerban and Lytras, [29]; 
Jafari et al., [30] 

Health Crises and 
Pandemics (RF6) 

Health management systems can be monitored with IoT 
devices, but major health crises can strain the city’s 
healthcare infrastructure and threaten public safety. 
Pandemics can disrupt social order. 

Petrova and Tairov [31]; 
Hassankhani et al., [32] 

 
Table 1 provides an overview of how each factor can affect the city while addressing the security 

risks of smart cities from various perspectives. 
 
3.1.2 Security Measures 
 

The main security systems used to ensure security in smart cities and the functions of each are 
described in Table 2. It is emphasized that each security system is a critical element that ensures the 
security of cities and is of great importance, especially for rapid reactions and effective interventions. 

Table 2.  
Security systems used in smart cities 

Security System Description 

Physical Security Systems 
(SS1) 

Security barriers, doors, and access control systems are physical infrastructure-
based security measures. They prevent unauthorized access and protect critical 
areas of the city. 

Surveillance and Monitoring 
Systems (SS2) 

Includes CCTV cameras, facial recognition systems, and smart city monitoring 
systems. It enables real-time monitoring to detect incidents and provide instant 
information to security forces. 

Sensor-Based Early Warning 
Systems (SS3) 

Utilizes sensors for motion, temperature, smoke, air quality, and water levels to 
detect environmental threats and alert relevant authorities early. Plays a crucial 
role in natural disasters and infrastructure issues. 

Software and Cybersecurity 
Systems (SS4) 

Covers encryption, anomaly detection, intrusion prevention systems, and AI-
powered security software. Protects city infrastructure against cyber threats. 

Emergency Response and 
Crisis Management Systems 
(SS5) 

Includes emergency protocols, evacuation plans, autonomous drones, and robots. 
Ensures rapid response in crisis situations to minimize losses. 

Table 2 describes the 5 main security systems used to ensure security in smart cities and the 
functions of each. It emphasizes that each security system is a critical element in ensuring the security 
of cities and is of great importance, especially for rapid reactions and effective interventions. 

3.2 Fuzzy sets 
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Zadeh [33], proposed the concept of fuzzy sets to address uncertainty in variables and 
parameters. Triangular Fuzzy Number (TFN) is used in various studies to turn qualitative assertions 
into quantitative ones [34]. A TFN represents each figure with three numerals. The first, second, and 
third integers that define a fuzzy number reflect the lowest, most, and highest potential values, 

respectively 𝐴̃(𝑙,𝑚, 𝑢). Eq. (1) defines the triangle type membership function for fuzzy numbers. 

𝜇𝐴(𝑥) =

{
 
 

 
 
0,                  𝑥 < 𝑙
𝑥 − 𝑙

𝑚 − 𝑙
, 𝑙 ≤ 𝑥 ≤ 𝑚

𝑢 − 𝑥

𝑢 −𝑚
,𝑚 ≤ 𝑥 ≤ 𝑢

0,                     𝑥 > 𝑢

                                                                                                                         (1) 

TFNs can be transformed into crisp values by applying the center of gravity defuzzification technique 

represented by Eq. (2). 

𝐴 =
𝑙 + 4𝑚 + 𝑢

6
                                                                                                                                                 (2) 

3.3 Fuzzy Bonferroni Aggregation Operator 

Aggregation operators, which are mathematical functions, aggregate group members' individual 

preferences, evaluations, or judgments to form a common conclusion throughout the group decision-

making process. The Bonferroni Aggregation (BA) operator is provided by Eq. (3) [35]. 

𝐵𝐴𝑝,𝑞(𝑎1, 𝑎2, . . . , 𝑎𝑛) = (
1

𝑛(𝑛 − 1)
∑ 𝑎𝑖

𝑝
𝑎𝑗
𝑞

𝑛

𝑖,𝑗=1 (𝑖≠𝑗)

)

1
𝑝+𝑞

                                                                           (3) 

where n is the number of experts, 𝑝, 𝑞 ≥ 0. 

3.4 F-WENSLO Method 

The reason for selecting the WENSLO method is its simple and comprehensible calculation 

procedure. The novel WENSLO approach, which determines criterion weights based on envelope-

slope ratios, represents a significant methodological innovation. In traditional multi-criteria decision-

making (MCDM) frameworks, weights are typically assigned based on predefined values or expert-

derived estimations. In contrast, the WENSLO method dynamically adjusts weights based on 

performance outcomes. This dynamic approach enhances the adaptability of the framework, 

ensuring better alignment with practical operational conditions. Pamučar et al. [36] presented the 

WENSLO technique for determining weight coefficients of criterion (crisp version). In this work, the 

WENSLO technique is fuzzification using triangular fuzzy numbers. 

Step 1. Construction of the initial decision matrix 

The selected experts prioritized the criteria using linguistic phrases from the fuzzy scale in Table 3. 
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Table 3.  
Fuzzy scale, linguistic expressions and 
triangular numbers 

Fuzzy Linguistic Descriptive Abbreviation Fuzzy Number 

Absolutely low AL (1,1,1) 

Very low VL (1,1.5,2) 

Low L (1.5,2,2.5) 

Medium M (2,2.5,3) 

Equal E (2.5,3,3.5) 

Medium-high MH (3,3.5,4) 

High H (3.5,4,4.5) 

Very high VH (4,4.5,5) 

Absolutely high AH (4.5,5,5) 

Source: Božanić et al. [37].  

The combined decision matrix (𝑍̃) is obtained using Eq. (4).  

𝑍̃ = [𝑧̃𝑖𝑗]𝑘𝑥𝑛 = [
𝑧̃11 ⋯ 𝑧̃1𝑛
⋮ ⋱ ⋮
𝑧̃𝑘1 ⋯ 𝑧̃𝑘𝑛

]                                                                                                                       (4) 

𝑧̃𝑖𝑗 = (𝑧𝑖𝑗
𝑙 , 𝑧𝑖𝑗

𝑚, 𝑧𝑖𝑗
𝑢) represents fuzzy value of criterion 𝑗. in alternative 𝑖. 

Step 2. Creating the normalization matrix (T̃). 

Eq. (5) is used to normalise the combined decision matrix. 

𝑡̃𝑖𝑗 = (𝑡𝑖𝑗
𝚤 , 𝑡𝑖𝑗

𝑚, 𝑡𝑖𝑗
𝑢) =

𝑧̃𝑗
∑ 𝑧̃𝑗
𝑛
𝑗=1

= (
𝑧𝑗
𝑙

∑ 𝑧𝑗
𝑢𝑛

𝑗=1

,
𝑧𝑗
𝑚

∑ 𝑧𝑗
𝑚𝑛

𝑗=1

,
𝑧𝑗
𝑢

∑ 𝑧𝑗
𝑙𝑛

𝑗=1

)                                                                 (5) 

Step 3. Calculation of criterion class interval (𝜌̃𝑗). 

The size of the j-th criteria class interval is determined using Sturges' rule, Eq. (6): 

𝜌̃𝑗 = (𝜌𝑗
𝑙 , 𝜌𝑗

𝑚, 𝜌𝑗
𝑢) = (

𝑚𝑎𝑥(𝑧𝑗
𝑙)  −  𝑚𝑖𝑛(𝑧𝑗

𝑙)

1 + 3.322 ∗ 𝑙𝑜𝑔(𝑘)
,
𝑚𝑎𝑥(𝑧𝑗

𝑚)  −  𝑚𝑖𝑛(𝑧𝑗
𝑚)

1 + 3.322 ∗ 𝑙𝑜𝑔(𝑘)
,
𝑚𝑎𝑥(𝑧𝑗

𝑢)  −  𝑚𝑖𝑛(𝑧𝑗
𝑢)

1 + 3.322 ∗ 𝑙𝑜𝑔(𝑘)
)    (6) 

Step 4. Determination of the criterion slope (𝑡𝑎𝑛𝜑̃𝑗). 

The slope of the criterion is calculated by Eq. (7). 

𝑡𝑎𝑛𝜑̃𝑗 =
∑ 𝑧̃𝑗
𝑘
𝑖=1

(𝑘 − 1)𝜌̃𝑗
= (

∑ 𝑧𝑗
𝑙𝑘

𝑖=1

(𝑘 − 1)𝜌𝑗
𝑢 ,

∑ 𝑧𝑗
𝑚𝑘

𝑖=1

(𝑘 − 1)𝜌𝑗
𝑚 ,

∑ 𝑧𝑗
𝑢𝑘

𝑖=1

(𝑘 − 1)𝜌𝑗
𝑙)                                                                  (7) 

Step 5. Determination of the criterion envelope (𝜀𝑗̃)    

Eq. (8) calculates the total of the partial Euclidean distances between two consecutive criteria. 
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𝜀𝑗̃ =

(∑ √(𝑧𝑖+1,𝑗
𝑙  −  𝑧𝑖𝑗

𝑙 )
2
+ (𝜌𝑗

𝑙)
2𝑘−1

𝑖=1 , ∑ √(𝑧𝑖+1,𝑗
𝑚  −  𝑧𝑖𝑗

𝑚)
2
+ (𝜌𝑗

𝑚)
2𝑘−1

𝑖=1  , ∑ √(𝑧𝑖+1,𝑗
𝑢  −  𝑧𝑖𝑗

𝑢)
2
+ (𝜌𝑗

𝑢)
2𝑘−1

𝑖=1   )(8)   

Step 6. Determine the envelope slope ratio (𝛿𝑗) 

The ratio of the total Euclidean distance to the criteria slope is calculated using Eq. (9). 

𝛿𝑗 =
𝜀𝑗̃

𝑡𝑎𝑛𝜑̃𝑗
= (

𝜀𝑗
𝑙

𝑡𝑎𝑛𝜑𝑗
𝑢 ,

𝜀𝑗
𝑚

𝑡𝑎𝑛𝜑𝑗
𝑚 ,

𝜀𝑗
𝑢

𝑡𝑎𝑛𝜑𝑗
𝑙  )                                                                                                     (9) 

Step 7. Obtaining fuzzy weights (w̃j) of each of the criterion 

Weights are determined using Eq. (10) depending on the criteria's significance coefficients.  

𝑤̃𝑗 = (𝑤𝑗
𝑙 , 𝑤𝑗

𝑚, 𝑤𝑗
𝑢) =

𝛿𝑗

∑ 𝛿𝑗
𝑛
𝑗=1

= (
𝛿𝑗
𝑙

∑ 𝛿𝑗
𝑢𝑛

𝑗=1

,
𝛿𝑗
𝑚

∑ 𝛿𝑗
𝑚𝑛

𝑗=1

,
𝛿𝑗
𝑢

∑ 𝛿𝑗
𝑙𝑛

𝑗=1

)                                                          (10) 

3.5 F-RAWEC Method  

The reason for selecting the RAWEC method is to simplify the decision-making process. With its 

few steps and ease of use, it minimizes the need for complex calculations, making it an efficient and 

practical alternative for multi-criteria decision-making (MCDM) applications. Moreover, the results 

obtained using the RAWEC method have shown strong consistency with those of other methods, and 

its reliability has been well-documented in the literature [38].  Puška et al. [38] presented the RAWEC 

technique for ranking alternatives (crisp version). In this study, the RAWEC technique is fuzzified using 

triangular fuzzy numbers. 

Step 1. Construction of the initial decision matrix 

The selected experts prioritized the criteria using linguistic phrases from the fuzzy scale in Table 3. 

The combined decision matrix (𝑋̃) is obtained using Eq. (11).  

𝑋̃ = [𝑥̃𝑖𝑗]𝑘𝑥𝑛 = [
𝑥̃11 ⋯ 𝑥̃1𝑛
⋮ ⋱ ⋮
𝑥̃𝑘1 ⋯ 𝑥̃𝑘𝑛

]                                                                                                                  (11)  

𝑥̃𝑖𝑗 = (𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑚, 𝑥𝑖𝑗
𝑢) represents fuzzy value of criterion 𝑗. in alternative 𝑖. 

Step 2. Creating the normalization matrix (Ñ). 

When normalising the initial decision matrix, double normalisation is performed with Eq. (12) for 

the benefit normalization (𝑛̃𝑖𝑗) and Eq. (13) for the cost normalization (𝑛̃𝑖𝑗)′. 

𝑛̃𝑖𝑗 = (𝑛𝑖𝑗
𝑙 , 𝑛𝑖𝑗

𝑚, 𝑛𝑖𝑗
𝑢 ) =

𝑥̃𝑗
𝑚𝑎𝑥(𝑥̃𝑖𝑗)

= (
𝑥𝑖𝑗
𝑙

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
,

𝑥𝑖𝑗
𝑚

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
,

𝑥𝑖𝑗
𝑢

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
)                                             (12) 



Knowledge and Decision Systems with Applications 

Volume 1, (2025) 70-91 

79 
 
 

 

and 

(𝑛̃𝑖𝑗)′ = (𝑛𝑖𝑗
𝑙 , 𝑛𝑖𝑗

𝑚, 𝑛𝑖𝑗
𝑢 ) =

𝑚𝑖𝑛(𝑥̃𝑖𝑗)

𝑥̃𝑖𝑗
= (

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑢 ,

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑚 ,

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑙 )                                           (12) 

𝑛̃𝑖𝑗 = (𝑛𝑖𝑗
𝑙 , 𝑛𝑖𝑗

𝑚, 𝑛𝑖𝑗
𝑢 ) =

𝑚𝑖𝑛(𝑥̃𝑖𝑗)

𝑥̃𝑖𝑗
= (

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑢 ,

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑚 ,

𝑚𝑖𝑛(𝑥𝑖𝑗
𝑙 )

𝑥𝑖𝑗
𝑙 )                                                (13) 

and 

(𝑛̃𝑖𝑗)′ = (𝑛𝑖𝑗
𝑙 , 𝑛𝑖𝑗

𝑚, 𝑛𝑖𝑗
𝑢 ) =

𝑥̃𝑗
𝑚𝑎𝑥(𝑥̃𝑖𝑗)

= (
𝑥𝑖𝑗
𝑙

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
,

𝑥𝑖𝑗
𝑚

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
,

𝑥𝑖𝑗
𝑢

𝑚𝑎𝑥(𝑥𝑖𝑗
𝑢)
)                                       (13) 

Step 3. Calculate the deviation from the criteria weight 

Eqs. (14) and (15) yield the total deviation from the weight of the criterion after first calculating the 

deviations of the normalized data from the maximum values denoted by the number 1. The 

deviation is then multiplied by the weights of the criteria. 

𝜗̃𝑖𝑗 = (∑[(1 − 𝑛𝑖𝑗
𝑢 ) ∗ 𝑤𝑗

𝑙]

𝑛

𝑖=1

,∑[(1 − 𝑛𝑖𝑗
𝑚) ∗ 𝑤𝑗

𝑚]

𝑛

𝑖=1

,∑[(1 − 𝑛𝑖𝑗
𝑙 ) ∗ 𝑤𝑗

𝑢]

𝑛

𝑖=1

)                                         (14) 

(𝜗̃𝑖𝑗)′ = (∑[(1 − (𝑛𝑖𝑗
𝑢 )′) ∗ 𝑤𝑗

𝑙]

𝑛

𝑖=1

,∑[(1 − (𝑛𝑖𝑗
𝑚)′) ∗ 𝑤𝑗

𝑚]

𝑛

𝑖=1

,∑[(1 − (𝑛𝑖𝑗
𝑙 )′) ∗ 𝑤𝑗

𝑢]

𝑛

𝑖=1

)                    (15) 

Step 4. Calculation of the value of the RAWEC method 

The value of the RAWEC method obtained by Eq. (16) takes a value between (-1,1).   

𝑄̃𝑖 =
(𝜗̃𝑖𝑗)′ − 𝜗̃𝑖𝑗

(𝜗̃𝑖𝑗)′ + 𝜗̃𝑖𝑗
= (

(𝜗𝑖𝑗
𝑙 )′ − 𝜗𝑖𝑗

𝑢

(𝜗𝑖𝑗
𝑢)′ + (𝜗𝑖𝑗

𝑢)
,
(𝜗𝑖𝑗

𝑚)′ − 𝜗𝑖𝑗
𝑚

(𝜗𝑖𝑗
𝑚)′ + (𝜗𝑖𝑗

𝑚)
,
(𝜗𝑖𝑗

𝑢)′ − 𝜗𝑖𝑗
𝑙

(𝜗𝑖𝑗
𝑙 )′ + (𝜗𝑖𝑗

𝑙 )
 )                                               (16) 

The degree to which the value of an alternative's technique is high determines its superiority. The 

best option is indicated by the alternative with the highest value. 

4. Case Study: Integrated Security Management in a Smart City – MetroCity Example 

People from various fields of expertise were brought together to form a decision-making group 
to work on integrated security management in the smart city. Table 4 shows the structure of the 
decision-making group with representatives from each field of expertise. 

Table 4.  
Structure of the Decision-Making Group 

Expert 
Code 

Expertise Area Role Description 

E1 Cybersecurity Expert 
Analyzes cyber threats to smart city infrastructure and ensures 
data security. 



Knowledge and Decision Systems with Applications 

Volume 1, (2025) 70-91 

80 
 
 

 

E2 
Traffic and Transportation Safety 
Expert 

Works on autonomous vehicles, traffic management, and 
transportation safety. 

E3 
Disaster Management and Emergency 
Coordination Expert 

Experienced in natural disaster and crisis management, 
oversees evacuation and response processes. 

E4 
Public Safety and Crisis Response 
Expert 

Analyzes crime rates, manages surveillance systems, and 
enhances public safety. 

By clearly defining the roles and responsibilities of each expert, the decision-making process is 
carried out comprehensively and effectively. 

MetroCity is a large metropolis that has adopted high-tech, smart city applications. The city 
administration aims to reduce many risks from cybersecurity to traffic management, from natural 
disasters to public safety in order to increase security. For this purpose, a comprehensive security 
management model has been created by integrating different security systems. One day, the 
following events occur in different residential areas of MetroCity at the same time: 

✓ Cybersecurity Threat (RF1) - Cyber Attack on City Networks 

The central system that manages MetroCity's traffic control systems and energy infrastructure is 
subject to a large-scale cyber-attack. The goal is to disrupt transportation and create chaos in the 
city. 

✓ Traffic Accident and Transportation Safety (RF2) - Autonomous Vehicle Accident 

An autonomous vehicle in the city center hits a pedestrian due to a signaling error. 

✓ Crime Rates and Public Safety (RF3) - Robbery and Public Safety Threat 

An organized robbery occurs in a crowded shopping mall. 

✓ Natural Disaster (RF4) - Flash Flood 

Floods occur in some parts of MetroCity due to unexpected heavy rainfall. 

✓ Energy Infrastructure and Outages (RF5) - Grid Failure 

A major outage occurs due to overloading of the main power grid. 

✓ Health Crisis and Pandemics (RF6) - Infectious Disease Case 

A passenger on public transportation in MetroCity is found to have high fever and difficulty breathing. 

The results of each expert's assessment of these risks according to Table 3 are given in Table 5. 

Table 5.  
Expert Assessment of Risk Factors 

Risk Factor E1 E2 E3 E4 

RF1  AH MH E H 

RF2  M AH MH E 

RF3  E H MH AH 

RF4  L E AH MH 

RF5  H MH VH MH 

RF6  MH E H AH 
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The risk factors in Table 2 were evaluated and scored by each expert within their own area of 
expertise. This scoring will help determine the weights of the criteria to be used in the final decision-
making process. Table 6 shows the evaluation of the security risks experienced in MetroCity and each 
security system according to Table 3 by four experts. 

Table 6.  
Experts' evaluation of security systems 

Security Systems Experts RF1 RF2 RF3 RF4 RF5 RF6 

SS1 

E1 L VL H M MH L 

E2 VL L VH E H M 

E3 L VL H M MH L 

E4 M L VH E H M 

SS2 

E1 E VH AH E L H 

E2 M AH AH MH M VH 

E3 MH H AH MH L H 

E4 E VH AH MH M H 

SS3 

E1 M AH E AH H AH 

E2 M AH E AH VH AH 

E3 E VH MH AH VH AH 

E4 L AH MH AH VH AH 

SS4 

E1 AH MH M E AH E 

E2 AH E E M AH E 

E3 AH E M M AH MH 

E4 AH E E E AH E 

SS5 

E1 MH H VH AH E AH 

E2 H MH VH VH E AH 

E3 E VH H AH MH AH 

E4 MH H VH AH E AH 

These evaluations in Table 6 help to understand the strengths and weaknesses of the proposed 
security systems in the decision-making process and provide information about the criteria to be 
taken into account in the final selection. 

4.1 Determining the weights with F-WENSLO method 

The initial decision matrix obtained as a result of the experts' evaluations and presented in Table 
5 was normalized using Eq. (5). The normalized matrix obtained is given in Table 7. 

Table 7.  
Normalized decision matrix 

 RF1 RF2 RF3 

E1 0,2647 0,3226 0,3704 0,1290 0,1786 0,2500 0,1471 0,1935 0,2593 

E2 0,1765 0,2258 0,2963 0,2903 0,3571 0,4167 0,2059 0,2581 0,3333 

E3 0,1471 0,1935 0,2593 0,1935 0,2500 0,3333 0,1765 0,2258 0,2963 

E4 0,2059 0,2581 0,3333 0,1613 0,2143 0,2917 0,2647 0,3226 0,3704 

max 0,2647 0,3226 0,3704 0,2903 0,3571 0,4167 0,2647 0,3226 0,3704 

min 0,1471 0,1935 0,2593 0,1290 0,1786 0,2500 0,1471 0,1935 0,2593 

 
RF4 RF5 RF6 
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E1 0,1000 0,1481 0,2174 0,2000 0,2581 0,3333 0,1765 0,2258 0,2963 

E2 0,1667 0,2222 0,3043 0,1714 0,2258 0,2963 0,1471 0,1935 0,2593 

E3 0,3000 0,3704 0,4348 0,2286 0,2903 0,3704 0,2059 0,2581 0,3333 

E4 0,2000 0,2593 0,3478 0,1714 0,2258 0,2963 0,2647 0,3226 0,3704 

max 0,3000 0,3704 0,4348 0,2286 0,2903 0,3704 0,2647 0,3226 0,3704 

min 0,1000 0,1481 0,2174 0,1714 0,2258 0,2963 0,1471 0,1935 0,2593 

In Table 7, the normalized values of the evaluation of RF1 by E1 are obtained as follows. 

𝑡̃11 = (
4,5

5 + 4 + 3,5 + 4,5
,

5

5 + 3,5 + 3 + 4
,

5

4,5 + 3 + 2,5 + 3,5
) = (0,2647   0,3226  0,3704) 

All elements of the matrix were calculated in a similar way.  

Then, the criterion class interval was calculated using Eq. (6), the criterion slope Eq. (7), the 
criterion envelope Eq. (8), the envelope slope ratio Eq. (9) and the fuzzy weight of each criterion Eq. 
(10) and presented in Table 8. 

Table 8.  
Calculations according to F-WENSLO 
method for criteria 

 
RF1 RF2 RF3 

𝝆̃𝒋 0,0392 0,0430 0,0370 0,0538 0,0595 0,0556 0,0392 0,0430 0,0370 

𝒕𝒂𝒏𝝋̃𝒋 0,7147 1,0333 1,5857 0,6194 0,9333 1,4830 0,7147 1,0333 1,5857 

𝜺̃𝒋 0,5289 0,5430 0,5471 0,5502 0,5710 0,5593 0,5653 0,5795 0,5471 

𝜹̃𝒋 0,3335 0,5255 0,7656 0,3710 0,6118 0,9030 0,3565 0,5608 0,7656 

𝒘̃𝒋 0,0673 0,1551 0,3129 0,0748 0,1806 0,3691 0,0719 0,1655 0,3129 
 

RF4 RF5 RF6 

𝝆̃𝒋 0,0667 0,0741 0,0725 0,0190 0,0215 0,0247 0,0392 0,0430 0,0370 

𝒕𝒂𝒏𝝋̃𝒋 0,5878 0,9000 1,0000 0,6943 1,1481 1,1667 0,7147 1,0333 1,5857 

𝜺̃𝒋 0,6215 0,6420 0,6171 0,5039 0,5206 0,5405 0,5268 0,5403 0,4961 

𝜹̃𝒋 0,6215 0,7134 1,0499 0,4319 0,4534 0,7785 0,3322 0,5229 0,6942 

𝒘̃𝒋 0,1254 0,2106 0,4291 0,0871 0,1338 0,3182 0,0670 0,1543 0,2837 

All calculations are shown specifically for RF1. 

𝜌̃𝑅𝐹1 = (
0,2647 − 0,1471

1 + 3,322 ∗ 𝑙𝑜𝑔4
,
0,3226 − 0,1935

1 + 3,322 ∗ 𝑙𝑜𝑔4
,
0,3704 − 0,2593

1 + 3,322 ∗ 𝑙𝑜𝑔4
) = (0,0392  0,0430  0,0370) 

𝑡𝑎𝑛𝜑̃𝑅𝐹1 =

(

 
 
 
 

0,2647 + 0,1765 + 0,1471 + 0,2059

3 ∗ 0,3704
,

0,3226 + 0,2258 + 0,1935 + 0,2581

3 ∗ 0,3226
,

0,3704 + 0,2963 + 0,2593 + 0,3333

3 ∗ 0,2647 )

 
 
 
 

= (0,7147  1,0333  1,5857) 
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𝜀𝑅̃𝐹1 = (

√((0,1765 − 0,2647)2 + 0,03922) + ((0,1471 − 0,1765)2 + 0,03922) + ((0,2059 − 0,1471)2 + 0,03922),

√((0,3226 − 0,2258)2 + 0,04302) + ((0,1935 − 0,2258)2 + 0,04302) + ((0,2581 − 0,1935)2 + 0,04302),

√((0,2963 − 0,3704)2 + 0,03702) + ((0,2593 − 0,2963)2 + 0,03702) + ((0,3333 − 0,2593)2 + 0,03702)

) 

𝜀𝑅̃𝐹1 = (0,5289  0,5430  0,5471) 

𝛿𝑅𝐹1 = (
0,5289

1,5857
,
0,5430

1,0333
,
0,5471

0,7147
) = (0,3335  0,5255  0,7656) 

𝑤̃𝑅𝐹1 =

(

 
 
 
 

0,3335

0,7656 + 0,9030+. . . +0,7785 + 0,6942
,

0,5255

0,5255 + 0,6118+. . . +0,4534 + 0,5229
,

0,7656

0,3335 + 0,3710+. . . +0,4319 + 0,3322)

 
 
 
 

= (0,0673  0,1551  0,3129) 

Then, the crips weights were obtained using Eq. (2). 

𝑤𝑅𝐹1 =
0,0673 + 4 ∗ 0,1551 + 0,3129

6
= 0,1668 

 

Since ∑ 𝑤𝑗
10
𝑗=1 = 1 should be for all weights, normalized weight values were obtained. 

𝜔𝑅𝐹1 =
0,1668

0,1668 + 0,1944+. . . +0,1568 + 0,1614
= 0,1535 

Similarly, the same procedures were performed for other weights. 

𝜔𝑗 = (0,1535  0,1789  0,1606  0,2143  0,1443  0,1485  ) 

According to these weight values, the importance of risk factors in MetroCity can be listed as 
follows: 

RF4: Flash Flood (0.2143). It is the most critical risk factor. Flash floods, which are among the natural 
disasters, have the highest weight value. This indicates that they pose a greater threat compared to 
other events experienced in the city and that security systems should focus more on them. RF2: 
Traffic Accident and Transportation Safety (0.1789). Autonomous vehicle accidents are seen as a 
significant security risk in the city. This indicates that the transportation infrastructure requires more 
security measures. RF3: Robbery and Public Safety Threat (0.1606). It reveals the seriousness of crime 
rates and public safety threats in the city. High-security monitoring systems and emergency response 
systems may need to be strengthened in this area. RF1: Cyber Security Threat (0.1535). Cyber-attacks 
on MetroCity's central systems are less critical compared to other events, but still pose a serious 
threat. It is recommended to strengthen cybersecurity systems to better protect digital 
infrastructure. RF6: Health Crisis and Pandemics (0.1485). The risk of infectious diseases is significant 
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but has a lower priority than other threats. It can be controlled with thermal cameras and digital 
monitoring systems. RF5: Energy Infrastructure and Outages (0.1443). It is the lowest risk factor. 
Although energy outages pose a significant risk, they are less critical compared to other factors. This 
may be due to alternative energy sources in the city or the fact that existing systems are more 
resistant to such risks. 

4.2 Fuzzy Bonferroni aggregation operator application 

Decision makers interpreted the performance of security systems according to Table 3. To bring 
these individual evaluations together, a joint fuzzy decision matrix was obtained using Equation (3) 
and is given in Table 9. 

Table 9.  
Combined fuzzy decision matrix  

RF1 RF2 RF3 

SS1 1,4860 1,9896 2,4917 1,2416 1,7440 2,2454 3,7472 4,2475 4,7478 

SS2 2,4917 2,9930 3,4940 3,9948 4,4954 4,8734 4,5000 5,0000 5,0000 

SS3 1,9896 2,4917 2,9930 4,3732 4,8734 5,0000 2,7462 3,2468 3,7472 

SS4 4,5000 5,0000 5,0000 2,6220 3,1225 3,6228 2,2454 2,7462 3,2468 

SS5 2,9930 3,4940 3,9948 3,4940 3,9948 4,4954 3,8730 4,3732 4,8734  
RF4 RF5 RF6 

SS1 2,2454 2,7462 3,2468 3,2468 3,7472 4,2475 1,7440 2,2454 2,7462 

SS2 2,8723 3,3727 3,8730 1,7440 2,2454 2,7462 3,6228 4,1231 4,6233 

SS3 4,5000 5,0000 5,0000 3,8730 4,3732 4,8734 4,5000 5,0000 5,0000 

SS4 2,2454 2,7462 3,2468 4,5000 5,0000 5,0000 2,6220 3,1225 3,6228 

SS5 4,3732 4,8734 5,0000 2,6220 3,1225 3,6228 4,5000 5,0000 5,0000 

Decision makers individually evaluated the performance of each security system in Table 3. However, 
since individual evaluations are based on different expert opinions, these evaluations need to be 
combined appropriately. The Bonferroni aggregation operator is a powerful operator used in the 
fuzzy decision-making process and was preferred due to the following advantages. 

✓ Balances Extreme Evaluations: It produces a more balanced result by softening the extremes 
between individual expert opinions. 

✓ Better Reflects Dependent and Interactive Data: Instead of the classical arithmetic average, it 
takes into account the interaction and dependency between evaluations. 

✓ Produces a Compromise Solution: If there are extremes between the opinions of decision 
makers, it creates the most appropriate fuzzy decision matrix by finding the middle ground. 

4.3 F-RAWEC method application  

Benefit and cost normalized decision matrices are obtained by using Eq. (12) and Eq. (13). These 
matrices are given in Table 10 and Table 11, respectively. 

Table 10.  
Benefit normalization matrix  

RF1 RF2 RF3 

SS1 0,5964 0,7469 1,0000 0,5530 0,7119 1,0000 0,4729 0,5286 0,5992 
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SS2 0,4253 0,4965 0,5964 0,2548 0,2762 0,3108 0,4491 0,4491 0,4990 

SS3 0,4965 0,5964 0,7469 0,2483 0,2548 0,2839 0,5992 0,6916 0,8176 

SS4 0,2972 0,2972 0,3302 0,3427 0,3976 0,4735 0,6916 0,8176 1,0000 

SS5 0,3720 0,4253 0,4965 0,2762 0,3108 0,3554 0,4607 0,5134 0,5798  
RF4 RF5 RF6 

SS1 0,6916 0,8176 1,0000 0,4106 0,4654 0,5372 0,6351 0,7767 1,0000 

SS2 0,5798 0,6658 0,7817 0,6351 0,7767 1,0000 0,3772 0,4230 0,4814 

SS3 0,4491 0,4491 0,4990 0,3579 0,3988 0,4503 0,3488 0,3488 0,3876 

SS4 0,6916 0,8176 1,0000 0,3488 0,3488 0,3876 0,4814 0,5585 0,6651 

SS5 0,4491 0,4607 0,5134 0,4814 0,5585 0,6651 0,3488 0,3488 0,3876 

The benefit normalized values for the RF1 risk factor of the SS1 security system are obtained as 
follows. 

𝑛̃11 = (
1,4860

2,4917
,
1,4860

1,9896
,
1,4860

1,4860
) = (0,5964  0,7469  1,0000) 

All elements of the matrix are calculated similarly. 

Table 11.  
Cost normalization matrix  

RF1 RF2 RF3 

SS1 0,2972 0,3979 0,4983 0,2483 0,3488 0,4491 0,7494 0,8495 0,9496 

SS2 0,4983 0,5986 0,6988 0,7990 0,8991 0,9747 0,9000 1,0000 1,0000 

SS3 0,3979 0,4983 0,5986 0,8746 0,9747 1,0000 0,5492 0,6494 0,7494 

SS4 0,9000 1,0000 1,0000 0,5244 0,6245 0,7246 0,4491 0,5492 0,6494 

SS5 0,5986 0,6988 0,7990 0,6988 0,7990 0,8991 0,7746 0,8746 0,9747  
RF4 RF5 RF6 

SS1 0,5492 0,6494 0,6494 0,7494 0,8495 0,3488 0,4491 0,5492 0,5492 

SS2 0,6745 0,7746 0,3488 0,4491 0,5492 0,7246 0,8246 0,9247 0,6745 

SS3 1,0000 1,0000 0,7746 0,8746 0,9747 0,9000 1,0000 1,0000 1,0000 

SS4 0,5492 0,6494 0,9000 1,0000 1,0000 0,5244 0,6245 0,7246 0,5492 

SS5 0,9747 1,0000 0,5244 0,6245 0,7246 0,9000 1,0000 1,0000 0,9747 

The cost normalized values for the RF1 risk factor of the SS1 security system are obtained as follows. 

(𝑛̃11)′ = (
1,4860

5,0000
,
1,9896

5,0000
,
2,4917

5,0000
) = (0,2972  0,3979  0,4983) 

All elements of the matrix are calculated in a similar way. 

Then, deviations from the criterion weights are obtained by Eq. (14) and Eq. (15). These matrices are 

given in Table 12 and Table 13, respectively. 

Table 12.  
Deviations from criteria weights 
(Benefit)  

RF1 RF2 RF3 
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SS1 0,0272 0,0393 0,0000 0,0335 0,0520 0,0000 0,0379 0,0780 0,1254 

SS2 0,0387 0,0781 0,1263 0,0558 0,1307 0,2544 0,0396 0,0912 0,1568 

SS3 0,0339 0,0626 0,0792 0,0563 0,1346 0,2643 0,0288 0,0511 0,0571 

SS4 0,0473 0,1090 0,2096 0,0492 0,1088 0,1943 0,0222 0,0302 0,0000 

SS5 0,0423 0,0891 0,1575 0,0542 0,1245 0,2379 0,0388 0,0806 0,1315  
RF4 RF5 RF6 

SS1 0,0387 0,0384 0,0000 0,0514 0,0715 0,1473 0,0245 0,0345 0,0000 

SS2 0,0527 0,0704 0,0937 0,0318 0,0299 0,0000 0,0417 0,0891 0,1471 

SS3 0,0691 0,1160 0,2150 0,0560 0,0805 0,1749 0,0436 0,1005 0,1738 

SS4 0,0387 0,0384 0,0000 0,0567 0,0872 0,1949 0,0348 0,0681 0,0950 

SS5 0,0691 0,1136 0,2088 0,0452 0,0591 0,1065 0,0436 0,1005 0,1738 

Deviations from the criterion weight for the RF1 risk factor of the SS1 security system are obtained 

as follows. 

𝜗̃11 = ((1 − 0,5964) ∗ 0,0673  (1 − 0,7469) ∗ 0,1551  (1 − 1) ∗ 0,3129) = (0,0272  0,0393  0,0000) 

All elements of the matrix are calculated similarly. 

Table 13.  
Deviations from criteria weights (Cost)  

RF1 RF2 RF3 

SS1 0,0473 0,0934 0,1570 0,0563 0,1176 0,2033 0,0180 0,0249 0,0473 

SS2 0,0338 0,0623 0,0942 0,0150 0,0182 0,0093 0,0072 0,0000 0,0338 

SS3 0,0405 0,0778 0,1256 0,0094 0,0046 0,0000 0,0324 0,0580 0,0405 

SS4 0,0067 0,0000 0,0000 0,0356 0,0678 0,1017 0,0396 0,0746 0,0067 

SS5 0,0270 0,0467 0,0629 0,0225 0,0363 0,0372 0,0162 0,0208 0,0270  
RF4 RF5 RF6 

SS1 0,0158 0,0691 0,0949 0,1505 0,0306 0,0335 0,0479 0,0436 0,0850 

SS2 0,0000 0,0534 0,0685 0,0967 0,0567 0,0737 0,1434 0,0185 0,0271 

SS3 0,0784 0,0125 0,0000 0,0000 0,0196 0,0168 0,0081 0,0067 0,0000 

SS4 0,1097 0,0691 0,0949 0,1505 0,0087 0,0000 0,0000 0,0319 0,0580 

SS5 0,0079 0,0157 0,0053 0,0000 0,0414 0,0503 0,0876 0,0067 0,0000 

Deviations from the criterion weight for the RF1 risk factor of the SS1 security system are obtained 

as follows. 

(𝜗̃11)′ = ((1 − 0,7028) ∗ 0,0673  (1 − 0,6021) ∗ 0,1551  (1 − 0,5017) ∗ 0,3129)

= (0,0473  0,0934  0,1570) 

All elements of the matrix are calculated in a similar way. The RAWEC method value is obtained with 
Eq. (16) and is given in Table 14. 

Table 14.  
Ranking of appropriate security systems 
for risk factors 
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 𝝑̃𝒊𝒋 (𝝑̃𝒊𝒋)′ 𝑸̃𝒊 𝑸𝒊 Rank 

SS1 0,2130 0,3137 0,2727 0,2648 0,4494 0,7023 -0,0080 0,1778 1,0240 0,2878 1 

SS2 0,2603 0,4893 0,7782 0,1846 0,2498 0,3651 -0,5192 -0,3240 0,2356 -0,2633 3 

SS3 0,2876 0,5452 0,9642 0,1212 0,1572 0,2121 -0,7167 -0,5524 -0,1849 -0,5185 4 

SS4 0,2488 0,4417 0,6937 0,1916 0,2953 0,4400 -0,4429 -0,1986 0,4340 -0,1339 2 

SS5 0,2931 0,5673 1,0161 0,1296 0,1594 0,1957 -0,7315 -0,5614 -0,2304 -0,5346 5 

The ranking value of the SS1 security system is obtained as follows. 

𝑄̃1 = (
0,2648 − 0,2727

0,7023 + 0,2727
,
0,4494 − 0,3137

0,4494 + 0,3137
,
0,7023 − 0,2130

0,2648 + 0,2130
) = (−0,0080  0,1778  1,0240) 

Table 14 evaluates the performance of different security systems and ranks them in terms of 
effectiveness. When 𝑄𝑖 values are examined, Physical Security Systems (SS1) have the highest impact 
among security systems (𝑄𝑖 = 0,2878), while Emergency Response and Crisis Management Systems 
(SS5) have the lowest performance (𝑄𝑖 = -0,5346). The results show that security systems should be 
addressed with an integrated approach. In particular, it has been revealed that physical security 
measures (SS1) play a critical role in preventing and responding to incidents. However, Software and 
Cyber Security Systems (SS4) (𝑄𝑖 = -0,1339) have a high level of impact in terms of preventing digital 
threats and should be considered as a complementary element to physical security measures. 

In contrast, Monitoring and Surveillance Systems (SS2) (𝑄𝑖= -0,2633), Sensor-Based Early Warning 
Systems (SS3) (𝑄𝑖= -0,5185) and Emergency Response Systems (SS5) (𝑄𝑖= -0,5346) showed relatively 
lower performance. This situation reveals that these systems alone may be insufficient and should 
be integrated with other security measures. 

5. Discussion, practical and managerial implications 

This study was conducted to evaluate various risk factors occurring in MetroCity and to determine 
the effectiveness of security systems against these risks. As a result of the analysis, the importance 
weights of the risk factors were determined and it was seen that the most critical risk was flash flood 
(RF4=0,2143). This was followed by autonomous vehicle accident (RF2=0,1789) and crime rates and 
public safety threat (RF3=0,1606). The lowest weighted risk factors were determined as network 
failure (RF5=0,1443) and infectious disease cases (RF6=0,1485). These findings reveal the need for 
the city administration and relevant stakeholders to focus their resources on the most critical risks. 
In addition, the performance of security systems was determined by 𝑄𝑖 values. While physical security 
systems (SS1=0,2878) stood out as the most effective solution, software and cyber security systems 
(SS4=-0,1339) came in second. While monitoring and surveillance systems (SS2=-0,2633) and sensor-
based early warning systems (SS3=-0,5185) were found to be moderately effective, emergency 
response and crisis management systems (SS5=-0,5346) had the lowest effectiveness. 
 
5.1 Practical and Managerial Implications 
 

✓ Restructuring Risk Management Strategies: The results showed that flash floods and traffic 
accidents are the most critical risk factors. Therefore, municipalities and infrastructure 
managers need to invest more in disaster management systems. The high-risk level of 
autonomous vehicle accidents reveals the need to strengthen smart traffic systems and 
signaling infrastructure. 
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✓ Integration and Optimization of Security Systems: The determination of physical security 
systems (SS1) as the most effective solution indicates that more investments should be made 
in these systems in the future. The fact that emergency response and crisis management 
systems (SS5) have the lowest level of effectiveness reveals the need to improve the 
integration and operational efficiency of these systems. 

✓ Determination of Technological Investment Areas: Integrating advanced artificial intelligence 
and machine learning-based systems with monitoring, sensor and software-based systems 
can increase system effectiveness. The cyber security infrastructure needs to be strengthened 
to effectively prevent cyber security threats (RF1). 

✓ Policy Recommendations for Decision Makers: Municipalities and decision makers should 
focus on the most critical risk factors (RF4 and RF2) to ensure more effective allocation of 
resources. In order to increase the effectiveness of security systems, the integration between 
physical and software-based security systems should be strengthened. The findings of this 
study contribute to both academic literature and provide guidance for practical applications. 
Future studies can be supported by different decision-making methods, focusing on the 
integration and increased effectiveness of security systems. 

 
6. Conclusions, limitations and future directions 
 

This study was conducted to evaluate various risk factors that may occur in MetroCity and to 
determine the effectiveness of different security systems against these risks. The findings show that 
flash floods and autonomous vehicle accidents are the most critical risk factors. The factors with the 
lowest risk level are network failure and infectious disease cases. When evaluated in terms of security 
systems, physical security systems were determined to be the most effective system, while 
emergency response and crisis management systems were found to have the lowest performance. 
 
6.1 Limitations of the Study 
 

✓ Data Scope: The data used in the study is specific to MetroCity and different results may be 
obtained in other cities. 

✓ Number of Decision Makers: The limited number of experts participating in the evaluation 
process may limit the generalizability of the results. 

✓ Methodological Scope: The decision-making methods used are based on certain assumptions 
and different results may be obtained when different methodologies are used. 

 
6.2 Future Directions 
 

✓ Real-Time Data Usage 
Risk management strategies can be developed by integrating real-time data and artificial intelligence-
supported analyses in city management processes. 

✓ Comparative Studies for Different Cities 
Similar analyses can be conducted in cities with different geographical and demographic 
characteristics to test the generalizability of the findings. 
This study provides significant contributions to the optimization of security systems in the context of 
smart city security. Future research is expected to offer more integrated solutions based on 
technological developments and data analysis. 
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