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the uncertainties and complexities in the assessment of security risks and
measures, this research employs two different fuzzy methods: weighting the
risk factors using the Fuzzy weight by envelope and slope (F-WENSLO)
method and selecting the most appropriate security measures using the Fuzzy
Ranking Alternatives with Weights of Criterion (F-RAWEC) method. The
proposed approach is applied to a case study on identifying and assessing
potential security risks in a smart city infrastructure. The risk factors used in
the study are identified as flash floods, traffic accidents and transportation
security, robbery and public safety threats, cybersecurity threats, health
crises and pandemics, and energy infrastructure and outages. Security
systems are defined as physical security systems, emergency response and
crisis management systems, software and cybersecurity systems, monitoring
and surveillance systems, and sensor-based early warning systems. The
results show that physical security measures play a critical role in preventing
and responding to incidents, while emergency response and crisis
management systems perform less well. It is also stated that software and
cybersecurity systems provide an effective solution against digital threats, but
their integration with other systems is important. The results show that the
fuzzy-based model significantly increases the accuracy in prioritizing risks
and provides a systematic method for selecting the most effective security
measures. This study contributes to the literature by presenting an innovative
decision-making tool for security management in smart cities.
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1. Introduction

Smart cities aim to make urban life more efficient, sustainable and secure with digital
technologies, big data analytics and artificial intelligence-based solutions. However, the acceleration
of urbanization and the spread of technological infrastructure also bring security threats [1]. Issues
such as crime rate analysis, emergency management, traffic safety and public order protection are
among the biggest security problems faced by smart cities [2,3].
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Traditional security management approaches cannot fully adapt to dynamic and variable risk
factors. Therefore, new methods that take uncertainties into account in security management and
are supported by multi-criteria decision making (MCDM) techniques are needed. In this study,
security risk factors in smart cities will be weighted using the F-WENSLO method and the most
appropriate security measures will be determined with the F-RAWEC method.

Fuzzy logic-based multi-criteria decision making (FMCDM) approaches aim to reduce the impact
of uncertainties by providing decision makers with more flexible and adaptable analyses [4-6]. These
approaches, unlike traditional decision-making methods, have the capacity to process uncertain and
fuzzy data, allowing decision makers to approach complex problems more effectively and accurately
[7]. FMCDM methods allow for more flexible evaluations between alternatives by taking into account
the uncertainty of each criterion [8]. In this way, it allows for more robust and reliable results,
especially in the evaluation of various risk factors and security measures. At the same time, it allows
decision makers to make more consistent and understandable decisions even in cases where
different views and information are combined [9,10]. In our study, a decision support model is
proposed to determine the most appropriate strategies by analyzing different security factors. This
model will guide security managers and city planners to better understand existing security threats
and develop effective intervention strategies.

Although various studies exist in the literature on assessing security risks and determining
appropriate security measures, this research stands out by developing a novel decision support
model that integrates the F-WENSLO and F-RAWEC methods. Specifically, the key contributions of
this study to literature are as follows:

v" Methodological Innovation: This study provides a more robust and flexible approach to
decision-making under uncertainty by dynamically weighting risk factors using the F-WENSLO
method and selecting the most appropriate security measures using the F-RAWEC method.
While traditional multi-criteria decision-making (MCDM) methods often rely on predefined or
expert-derived weighting techniques, this study employs a performance-based dynamic
weighting approach.

v' Integrated Security Management Model: While most existing studies in the literature focus
on individual risk factors or specific security systems, this research conducts a holistic security
assessment, analyzing various security risks that smart cities may encounter. The study
comprehensively evaluates critical risk factors, including cybersecurity threats, traffic
accidents, crime rates, natural disasters, energy outages, and health crises, alongside five
different security measures: physical security, monitoring and surveillance, early warning
systems, cybersecurity, and emergency response systems.

v" Real-World Application: A case study was conducted using a smart city scenario (MetroCity)
to demonstrate how theoretical methods can be integrated into practical decision support
processes. This application provides city administrators with a concrete decision-making tool.
The findings indicate that physical security measures (SS1) play a crucial role, while
emergency response systems (SS5) exhibit lower performance, offering important insights for
policymakers.

v" Advancing the Use of Fuzzy MCDM: While previous studies on smart city security primarily
rely on classical decision-making models that operate with precise data, this study adopts a
fuzzy logic-based approach, enabling the management of uncertainty. This allows for greater
flexibility in incorporating expert opinions and uncertain datasets into the decision-making
process.
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In conclusion, this research expands the existing literature by introducing a new methodological
approach to risk management and security measure selection in smart cities. Additionally, it provides
a data-driven, dynamic, and integrated security management model, offering valuable contributions
to both academic research and practical applications. In the rest of this article, first of all, existing
security management and FMCDM applications in the literature will be examined, then the proposed
methodology will be detailed. Finally, the applicability of the model will be evaluated through a case
study and the results will be discussed.

2. Literature Review

Security management in smart cities is a rapidly developing field, and the assessment of risks and
selection of appropriate security measures are of great importance. In recent years, traditional
security management methods have evolved to take into account the dynamic structure and data
richness of smart cities [11]. While traditional MCDM techniques consider a large number of factors,
fuzzy logic-based methods can better handle uncertainties and imprecise data. Fuzzy MCDM is used
as an important tool in weighting risk factors and selecting security measures. Fuzzy logic offers
security managers flexibility that allows them to make better decisions in uncertain environmental
conditions [12]. Methods such as F-WENSLO and F-RAWEC are widely used in the processes of more
accurate risk assessment and precaution selection.

Security in smart cities is not limited to the protection of physical infrastructure. loT (Internet of
Things) technology provides critical data to optimize city security. While loT-based sensors are used
for early detection of security threats and risk assessment, FMCDM techniques make significant
contributions in analyzing this data and selecting appropriate precautions [13]. In this context, studies
in the field of security management in smart cities increasingly adopt the integration of loT and
FMCDM.

In addition, studies conducted in recent years show that these methods are not only limited to
security measures, but also provide efficient use of resources and reduced operational costs. These
studies emphasize the importance of weighing risks and finding the most appropriate solutions for
the correct selection of security measures.

Smart cities are modern residential areas that aim to make services within the city more efficient
by using advanced information and communication technologies. Studies on critical factors such as
sustainability, security, energy efficiency and transportation are increasing in these cities. Most
studies adopt MCDM methods and fuzzy logic-based approaches to solve various problems in cities.
Such methods allow for more accurate management of uncertainty and unclear data.

Fayyaz et al., [14] determined security as the most critical factor in the design of city streets for
the integration of autonomous vehicles (AVs) and bicycles in smart cities by using a combination of
interval-fuzzy multi-criteria decision making and game theory. The study emphasizes that green
infrastructure and smart technology integration are optimal strategies, and these strategies help to
provide a balance between bicycles and AVs, making the transportation system more efficient and
sustainable. Similarly, Kaveh et al., [15] developed a strategic framework combining MCDM and
mathematical optimization methods, considering sustainability, resilience and smart cities for
disaster management. The study emphasized the importance of infrastructure, health centers,
transportation networks in the pre-disaster preparation and risk reduction stages, and determined
the most suitable locations and suppliers for optimal emergency preparedness.

Various studies are also being conducted on environmental and energy efficiency issues. Otay et
al., [16] used multi-expert interval-fuzzy BWM and TOPSIS methodology while evaluating sustainable
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energy systems in smart cities. According to the results of the study, environmental sustainability
criterion was determined as the most important criterion, and other factors such as energy
technology investments and transportation systems were also listed. Chaurasiya and Jain [17]
presented a hybrid MCDM framework to improve waste management in smart cities in developing
countries such as India. In the study, they determined the most suitable loT-based waste
management technologies using Pythagorean fuzzy MEREC, SWARA and ARAS methods.

Fuzzy logic and MCDM methods find application in many areas in smart cities due to their ability
to manage uncertainties. Rani and Potika [18] developed a model that manages such uncertainties
while assessing forest fire risks in smart cities. This model ranks the fire risk status of various cities
using factors such as weather, vegetation and terrain characteristics. Makki and Algahtani [19]
studied the barriers in smart cities and used DEMATEL (Decision-Making Trial and Evaluation
Laboratory) approach to overcome these barriers. In this study, factors such as technical problems,
infrastructure deficiencies and high costs were identified as the main barriers and comprehensive
strategies were proposed to solve these barriers. Maniratinam et al., [20] developed a new MCDM
method to analyze user satisfaction for micro-mobility vehicles (e.g., electric scooters). This method
includes evaluation criteria for increasing sustainable clean energy transportation in smart cities. The
results of the study show that users evaluate the quality of micro-mobility services according to
criteria such as accessibility, reliability, responsiveness and performance.

The studies reveal the importance of MCDM and fuzzy logic approaches in the evaluation of
various systems in smart cities, especially in sustainability, energy efficiency, security and
transportation. These methods help cities to be managed efficiently while also managing
uncertainties and complexities more effectively.

3. Methodology
This research aims to optimize the risk assessment and precaution selection processes by using

FMCDM methods to improve security management in smart cities. The flow diagram describing the
analysis process of the research is given in Figure 1.
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Fig. 1. Flow chart
At the end of these steps in Figure 1, security risk factors in smart cities are weighted, individual
decisions are converted to a common result, and security systems are ranked according to the

determined criteria. This process aims to optimize risk management in smart cities using FMCDM
methods.

3.1 Data Collection

The data collection phase will be carried out to determine security risks in smart cities and the
measures that can be taken against these risks. In this process, the existing literature on security
measures in smart cities will be examined and data obtained from loT (Internet of Things) based
systems will be used.

3.1.1 Security Risk Factors

Security risk factors in smart cities are given in Table 1 with their explanations.
Table 1.
Security risk factors in smart cities

Risk Factor Description References

The digital infrastructures of smart cities are vulnerable to
Cybersecurity Threats  cyber-attacks. Threats such as hacking, data breaches, and
(RF1) malware can damage city infrastructure and put citizens'
personal information at risk.

Chatterjee et al., [21];

Elmaghraby and Losavio,
[22]
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Traffic Accidents and
Transportation Safety
(RF2)

Emerging technologies such as smart traffic management

systems and autonomous vehicles may lead to traffic Jagatheesaperumal et al.,
accidents. Infrastructure deficiencies or system failures can [23]; Adewopo et al., [24]
threaten traffic safety.

In smart cities, crime rates can be monitored through security

Crime Rates and Public cameras and facial recognition technology. However, these Tutak and Brodny, [25];
Safety (RF3) technologies can also be manipulated, leading to ethical O’Malley and Smith, [26]
concerns such as violations of personal privacy.
Natural Disasters Eérly warning systems and.sensors can monitor patural Elvas et al,, [27]; Nefros et
(Earthquakes, Floods, disasters, but large-scale disasters can destroy city al., (28]
Fires) (RF4) infrastructure and increase security risks. v
Energy Infrastructure Disruptions in energy infr:?structur.e ca.n impact ’Fhe city.
Power outages pose a major security risk, especially for Serban and Lytras, [29];

and Power Outages

critical infrastructure, and can hinder the operation of other Jafarietal., [30]

(RF5) i ) )

security measures in the city.

Health management systems can be monitored with loT
Health Crises and devices, but major health crises can strain the city’s Petrova and Tairov [31];
Pandemics (RF6) healthcare infrastructure and threaten public safety. Hassankhani et al., [32]

Pandemics can disrupt social order.

Table 1 provides an overview of how each factor can affect the city while addressing the security
risks of smart cities from various perspectives.

3.1.2 Security Measures

The main security systems used to ensure security in smart cities and the functions of each are
described in Table 2. It is emphasized that each security system is a critical element that ensures the
security of cities and is of great importance, especially for rapid reactions and effective interventions.

Table 2.
Security systems used in smart cities

Security System

Description

Physical Security Systems
(SS1)

Security barriers, doors, and access control systems are physical infrastructure-
based security measures. They prevent unauthorized access and protect critical
areas of the city.

Surveillance and Monitoring
Systems (SS2)

Includes CCTV cameras, facial recognition systems, and smart city monitoring
systems. It enables real-time monitoring to detect incidents and provide instant
information to security forces.

Sensor-Based Early Warning
Systems (SS3)

Utilizes sensors for motion, temperature, smoke, air quality, and water levels to
detect environmental threats and alert relevant authorities early. Plays a crucial
role in natural disasters and infrastructure issues.

Software and Cybersecurity
Systems (SS4)

Covers encryption, anomaly detection, intrusion prevention systems, and Al-
powered security software. Protects city infrastructure against cyber threats.

Emergency Response and
Crisis Management Systems
(SS5)

Includes emergency protocols, evacuation plans, autonomous drones, and robots.
Ensures rapid response in crisis situations to minimize losses.

Table 2 describes the 5 main security systems used to ensure security in smart cities and the
functions of each. It emphasizes that each security system is a critical element in ensuring the security
of cities and is of great importance, especially for rapid reactions and effective interventions.

3.2 Fuzzy sets
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Zadeh [33], proposed the concept of fuzzy sets to address uncertainty in variables and
parameters. Triangular Fuzzy Number (TFN) is used in various studies to turn qualitative assertions
into quantitative ones [34]. A TFN represents each figure with three numerals. The first, second, and
third integers that define a fuzzy number reflect the lowest, most, and highest potential values,
respectively A(1, m, u). Eq. (1) defines the triangle type membership function for fuzzy numbers.

0, x <l
x—1
_l,leSm
pa(x) ={ m - | €
m<x<u
u—m
0, x>u

TFNs can be transformed into crisp values by applying the center of gravity defuzzification technique
represented by Eq. (2).

_l+4m+u

6 (2)

3.3 Fuzzy Bonferroni Aggregation Operator

Aggregation operators, which are mathematical functions, aggregate group members' individual
preferences, evaluations, or judgments to form a common conclusion throughout the group decision-
making process. The Bonferroni Aggregation (BA) operator is provided by Eq. (3) [35].

1
1 n p+q
BAP4(ay,ay,...,a,) = | ——< Z afaf 3

nn=1, 42,

where n is the number of experts, p,q = 0.

3.4 F-WENSLO Method

The reason for selecting the WENSLO method is its simple and comprehensible calculation
procedure. The novel WENSLO approach, which determines criterion weights based on envelope-
slope ratios, represents a significant methodological innovation. In traditional multi-criteria decision-
making (MCDM) frameworks, weights are typically assigned based on predefined values or expert-
derived estimations. In contrast, the WENSLO method dynamically adjusts weights based on
performance outcomes. This dynamic approach enhances the adaptability of the framework,
ensuring better alignment with practical operational conditions. Pamucar et al. [36] presented the
WENSLO technique for determining weight coefficients of criterion (crisp version). In this work, the
WENSLO technique is fuzzification using triangular fuzzy numbers.

Step 1. Construction of the initial decision matrix
The selected experts prioritized the criteria using linguistic phrases from the fuzzy scale in Table 3.
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Table 3.
Fuzzy scale, linguistic expressions and
triangular numbers

Fuzzy Linguistic Descriptive Abbreviation Fuzzy Number
Absolutely low AL (1,1,2)

Very low VL (1,1.5,2)

Low L (1.5,2,2.5)
Medium M (2,2.5,3)

Equal E (2.5,3,3.5)
Medium-high MH (3,3.5,4)

High H (3.5,4,4.5)
Very high VH (4,4.5,5)
Absolutely high AH (4.5,5,5)

Source: BozZanié et al. [37].

The combined decision matrix (Z) is obtained using Eq. (4).

~ Z11 v Zin
Z = [Zij]kxn = ~: . ~' (4‘)
Zk1r " Zkn
Zij = (zl-lj, zi’}?, zl’j) represents fuzzy value of criterion j. in alternative i.
Step 2. Creating the normalization matrix (T)
Eqg. (5) is used to normalise the combined decision matrix.
~ l m u
y =t th) =57~ = 5750 mse 2 (5)
Jj=14j j=17j j=17j j=17j

Step 3. Calculation of criterion class interval (9;).

The size of the j-th criteria class interval is determined using Sturges' rule, Eq. (6):

5, = (b o p) = (MG~ min(e) max(G) — min) max(z) — minG)
I 1+3.322xlog(k) ° 1+3.322xlog(k) ' 1+3.322+log(k)

Step 4. Determination of the criterion slope (tan;).

The slope of the criterion is calculated by Eq. (7).

Vi % _ < 1z iz Nz >
(k—=1)p; \(ke—Dp} (e —Dpf*’ (k- 1)p}

(7)

tand; =

Step 5. Determination of the criterion envelope (&;)

Eqg. (8) calculates the total of the partial Euclidean distances between two consecutive criteria.
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EJ_

(2t et = o) + (%22 JCtha, = )+ ) 22 Gt = 2+ (61 )10

Step 6. Determine the envelope slope ratio (Sj)
The ratio of the total Euclidean distance to the criteria slope is calculated using Eq. (9).

~ l m u
~ & & &; E;
R e e ©

tang; \tang} tane]’ tang!

Step 7. Obtaining fuzzy weights (\TVJ-) of each of the criterion

Weights are determined using Eq. (10) depending on the criteria's significance coefficients.

Sj < 6} 5]-’” 6]?‘ )
(W W , Wy ) — = , ) (10)
1}'1=1 5]‘ 7J'1=1 6fu 6m J 1 611

3.5 F-RAWEC Method

The reason for selecting the RAWEC method is to simplify the decision-making process. With its
few steps and ease of use, it minimizes the need for complex calculations, making it an efficient and
practical alternative for multi-criteria decision-making (MCDM) applications. Moreover, the results
obtained using the RAWEC method have shown strong consistency with those of other methods, and
its reliability has been well-documented in the literature [38]. Puska et al. [38] presented the RAWEC
technique for ranking alternatives (crisp version). In this study, the RAWEC technique is fuzzified using
triangular fuzzy numbers.

Step 1. Construction of the initial decision matrix
The selected experts prioritized the criteria using linguistic phrases from the fuzzy scale in Table 3.

The combined decision matrix (X) is obtained using Eq. (11).

X11 "t Xin

X=[x,] = [f

Xk1 0 Xgn

(1)

— (1
Xij = (xij, Xij,X ) represents fuzzy value of criterion j. in alternative i.

Step 2. Creating the normalization matrix (N)

When normalising the initial decision matrix, double normalisation is performed with Eq. (12) for

the benefit normalization (7i;;) and Eq. (13) for the cost normalization (ﬁij)'.

!
Xij Xij Xij
nij =(n%j’ l]' l])_ = uy’ uy’ u (12)
max(xU) max(x;;) max(x;;) max(x;;)
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and
(7))’ = (nt, it ) = mm(xl]) (min(xilj) min(xfj) min(xb)) (12)
i) = (nij,nij,nij Xt xm T L
ij ij ij
oty PG _ (minGeh) minGed) minGel) 3
B A T )
and
l m
Xi; Xi; X
~ \/ l ij ij ij
.. = ..' ' = = 13
(7)) (n” b ”) max(xl]) (max(x i) max(x() max (x} > (13)

Step 3. Calculate the deviation from the criteria weight

Egs. (14) and (15) yield the total deviation from the weight of the criterion after first calculating the
deviations of the normalized data from the maximum values denoted by the number 1. The

deviation is then multiplied by the weights of the criteria.

i (z[(l —nij) = wj i [(1 = n}) » w] ’i[(l - ) * Wju]) (14)

i=1

(3y) = (Z[(l—m))*wl] Z[(l—(n )= wpr) Z[(l—(nu))*w 1) (15)

Step 4. Calculation of the value of the RAWEC method
The value of the RAWEC method obtained by Eq. (16) takes a value between (-1,1).
- (By) =0y (L) -0 (OF) -9 (9%) -9

SN CAESA ((19 )+ 8) 0F) + (0F) (95)" + (9 )

The degree to which the value of an alternative's technique is high determines its superiority. The

(16)

best option is indicated by the alternative with the highest value.

4. Case Study: Integrated Security Management in a Smart City — MetroCity Example

People from various fields of expertise were brought together to form a decision-making group
to work on integrated security management in the smart city. Table 4 shows the structure of the
decision-making group with representatives from each field of expertise.

Table 4.
Structure of the Decision-Making Group
Expert . i
Code Expertise Area Role Description
E1 Cybersecurity Expert Analyzes cyber threats to smart city infrastructure and ensures

data security.
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£2 Traffic and Transportation Safety Works on autonomous vehicles, traffic management, and
Expert transportation safety.

E3 Disaster Management and Emergency  Experienced in natural disaster and crisis management,
Coordination Expert oversees evacuation and response processes.

Ea Public Safety and Crisis Response Analyzes crime rates, manages surveillance systems, and
Expert enhances public safety.

By clearly defining the roles and responsibilities of each expert, the decision-making process is
carried out comprehensively and effectively.

MetroCity is a large metropolis that has adopted high-tech, smart city applications. The city
administration aims to reduce many risks from cybersecurity to traffic management, from natural
disasters to public safety in order to increase security. For this purpose, a comprehensive security
management model has been created by integrating different security systems. One day, the
following events occur in different residential areas of MetroCity at the same time:

v Cybersecurity Threat (RF1) - Cyber Attack on City Networks

The central system that manages MetroCity's traffic control systems and energy infrastructure is
subject to a large-scale cyber-attack. The goal is to disrupt transportation and create chaos in the
city.

v’ Traffic Accident and Transportation Safety (RF2) - Autonomous Vehicle Accident
An autonomous vehicle in the city center hits a pedestrian due to a signaling error.
v Crime Rates and Public Safety (RF3) - Robbery and Public Safety Threat
An organized robbery occurs in a crowded shopping mall.
v" Natural Disaster (RF4) - Flash Flood
Floods occur in some parts of MetroCity due to unexpected heavy rainfall.
v Energy Infrastructure and Outages (RF5) - Grid Failure
A major outage occurs due to overloading of the main power grid.
v Health Crisis and Pandemics (RF6) - Infectious Disease Case
A passenger on public transportation in MetroCity is found to have high fever and difficulty breathing.

The results of each expert's assessment of these risks according to Table 3 are given in Table 5.

Table 5.

Expert Assessment of Risk Factors
Risk Factor E1 E2 E3 E4
RF1 AH MH E H
RF2 M AH MH E
RF3 E H MH AH
RF4 L E AH MH
RF5 H MH VH MH
RF6 MH E H AH
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The risk factors in Table 2 were evaluated and scored by each expert within their own area of
expertise. This scoring will help determine the weights of the criteria to be used in the final decision-
making process. Table 6 shows the evaluation of the security risks experienced in MetroCity and each
security system according to Table 3 by four experts.

Table 6.
Experts' evaluation of security systems
Security Systems Experts RF1 RF2 RF3 RF4 RF5 RF6
E1l L VL H M MH L
$s1 E2 VL L VH E H M
E3 L VL H M MH L
E4 M L VH E H M
El E VH AH E L H
E2 M AH AH MH M VH
552 E3 MH H AH MH L H
E4 E VH AH MH M H
El M AH E AH H AH
E2 M AH E AH VH AH
553 E3 E VH MH AH VH AH
E4 L AH MH AH VH AH
El AH MH M E AH E
ssa E2 AH E E M AH E
E3 AH E M M AH MH
E4 AH E E E AH E
El MH H VH AH E AH
E2 H MH VH VH E AH
553 E3 E VH H AH MH AH
E4 MH H VH AH E AH

These evaluations in Table 6 help to understand the strengths and weaknesses of the proposed
security systems in the decision-making process and provide information about the criteria to be

taken into account in the final selection.

4.1 Determining the weights with F-WENSLO method

The initial decision matrix obtained as a result of the experts' evaluations and presented in Table
5 was normalized using Eq. (5). The normalized matrix obtained is given in Table 7.

Table 7.
Normalized decision matrix
RF1 RF2 RF3
E1l 0,2647 0,3226 0,3704 0,1290 0,1786 0,2500 0,1471 0,1935 0,2593
E2 0,1765 0,2258 0,2963 0,2903 0,3571 0,4167 0,2059 0,2581 0,3333
E3 0,1471 0,1935 0,2593 0,1935 0,2500 0,3333 0,1765 0,2258 0,2963
E4 0,2059 0,2581 0,3333 0,1613 0,2143 0,2917 0,2647 0,3226 0,3704
max 0,2647 0,3226 0,3704 0,2903 0,3571 0,4167 0,2647 0,3226 0,3704
min 0,1471 0,1935 0,2593 0,1290 0,1786 0,2500 0,1471 0,1935 0,2593
RF4 RF5 RF6
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El 0,1000 0,1481 0,2174 0,2000 0,2581 0,3333 0,1765 0,2258 0,2963
E2 0,1667 0,2222 0,3043 0,1714 0,2258 0,2963 0,1471 0,1935 0,2593
E3 0,3000 0,3704 0,4348 0,2286 0,2903 0,3704 0,2059 0,2581 0,3333
E4 0,2000 0,2593 0,3478 0,1714 0,2258 0,2963 0,2647 0,3226 0,3704
max 0,3000 0,3704 0,4348 0,2286 0,2903 0,3704 0,2647 0,3226 0,3704
min 0,1000 0,1481 0,2174 0,1714 0,2258 0,2963 0,1471 0,1935 0,2593

In Table 7, the normalized values of the evaluation of RF1 by E1 are obtained as follows.

3 4,5 5 5
£, = ) ) = (0,2647 0,3226 0,3704
1 (5+4+3,5+4,5 54+35+3+4 4,5+3+2,5+3,5) ( )

All elements of the matrix were calculated in a similar way.

Then, the criterion class interval was calculated using Eq. (6), the criterion slope Eq. (7), the
criterion envelope Eqg. (8), the envelope slope ratio Eq. (9) and the fuzzy weight of each criterion Eq.
(10) and presented in Table 8.

Table 8.
Calculations according to F-WENSLO
method for criteria

RF1 RF2 RF3

Pj 0,0392 0,0430 0,0370 0,0538 0,0595 0,0556 0,0392 0,0430 0,0370

tang; 0,7147 1,0333 11,5857 0,6194 0,9333 11,4830 0,7147 11,0333 1,5857

0,5289 0,5430 0,5471 0,5502 0,5710 0,5593 10,5653 0,5795 0,5471

]
31- 0,3335 0,5255 0,7656 0,3710 0,6118 0,9030 0,3565 0,5608 0,7656

w; 0,0673 0,1551 0,3129 0,0748 0,1806 0,3691 10,0719 0,1655 0,3129

RF4 RF5 RF6

Pj 0,0667 0,0741 0,0725 0,0190 0,0215 0,0247 10,0392 0,0430 0,0370

tang; 0,5878 0,9000 1,0000 0,6943 1,1481 1,1667 0,7147 1,0333 1,5857

I 0,6215 0,6420 0,6171 0,5039 0,5206 0,5405 0,5268 0,5403 0,4961

3,- 0,6215 0,7134 11,0499 0,4319 0,4534 10,7785 10,3322 0,5229 0,6942

w; 0,1254 0,2106 0,4291 0,0871 0,1338 0,3182 0,0670 0,1543 0,2837

All calculations are shown specifically for RF1.

0,2647 — 0,1471 0,3226 — 0,1935 0,3704 — 0,2593
1+ 3,322« log4’ 1+ 3,322 xlog4’ 1 + 3,322 * log4

Pri1 = ( ) = (0,0392 0,0430 0,0370)

0,2647 + 0,1765 + 0,1471 + 0,2059

30,3704 ’

. 0,3226 + 0,2258 + 0,1935 + 0,2581
tan@ppy = , | = (0,7147 1,0333 1,5857)
3%0,3226

0,3704 + 0,2963 + 0,2593 + 0,3333
3%0,2647
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J((0,1765 — 0,2647)2 + 0,03922) + ((0,1471 — 0,1765)2 + 0,03922) + ((0,2059 — 0,1471)2 + 0,03922),
&rr1 = | 1/((0,3226 — 0,2258)% + 0,04302) + ((0,1935 — 0,2258)2 + 0,04302) + ((0,2581 — 0,1935)2 + 0,04302),
J((0,2963 — 0,3704)2 + 0,03702) + ((0,2593 — 0,2963) + 0,03702) + ((0,3333 — 0,2593)2 + 0,03702)

&rry = (0,5289 0,5430 0,5471)

< 0,5289 0,5430 0,5471
( ) = (0,3335 0,5255 0,7656)

RF1 = \15857°1,0333°0,7147
0,3335
0,7656 + 0,9030+...40,7785 + 0,6942°
_ 0,5255
Wppy = ., | = (0,0673 0,1551 0,3129)
0,5255 + 0,6118+... 40,4534 + 0,5229
0,7656

0,3335+0,3710+...+0,4319 4+ 0,3322
Then, the crips weights were obtained using Eq. (2).

0,0673 + 4« 0,1551 + 0,3129
WRF1 = 3 =0,1668

Since ). 21 w; = 1 should be for all weights, normalized weight values were obtained.

1
J

B 0,1668
“RF1 = 01668 + 01944+...+0,1568 + 0,1614

= 0,1535

Similarly, the same procedures were performed for other weights.
wj = (0,1535 0,1789 0,1606 0,2143 0,1443 0,1485 )

According to these weight values, the importance of risk factors in MetroCity can be listed as
follows:

RF4: Flash Flood (0.2143). It is the most critical risk factor. Flash floods, which are among the natural
disasters, have the highest weight value. This indicates that they pose a greater threat compared to
other events experienced in the city and that security systems should focus more on them. RF2:
Traffic Accident and Transportation Safety (0.1789). Autonomous vehicle accidents are seen as a
significant security risk in the city. This indicates that the transportation infrastructure requires more
security measures. RF3: Robbery and Public Safety Threat (0.1606). It reveals the seriousness of crime
rates and public safety threats in the city. High-security monitoring systems and emergency response
systems may need to be strengthened in this area. RF1: Cyber Security Threat (0.1535). Cyber-attacks
on MetroCity's central systems are less critical compared to other events, but still pose a serious
threat. It is recommended to strengthen cybersecurity systems to better protect digital
infrastructure. RF6: Health Crisis and Pandemics (0.1485). The risk of infectious diseases is significant
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but has a lower priority than other threats. It can be controlled with thermal cameras and digital
monitoring systems. RF5: Energy Infrastructure and Outages (0.1443). It is the lowest risk factor.
Although energy outages pose a significant risk, they are less critical compared to other factors. This
may be due to alternative energy sources in the city or the fact that existing systems are more
resistant to such risks.

4.2 Fuzzy Bonferroni aggregation operator application

Decision makers interpreted the performance of security systems according to Table 3. To bring
these individual evaluations together, a joint fuzzy decision matrix was obtained using Equation (3)
and is given in Table 9.

Table 9.
Combined fuzzy decision matrix
RF1 RF2 RF3
SS1 11,4860 1,9896 12,4917 11,2416 1,7440 12,2454 3,7472 4,2475 4,7478
§S2 2,4917 12,9930 3,4940 13,9948 4,4954 4,8734 4,5000 5,0000 5,0000
SS3 11,9896 12,4917 12,9930 4,3732 4,8734 15,0000 2,7462 3,2468 3,7472
SS4 4,5000 5,0000 5,0000 2,6220 3,1225 3,6228 12,2454 12,7462 3,2468
SS5 12,9930 3,4940 3,9948 13,4940 3,9948 4,4954 13,8730 4,3732 4,8734
RF4 RF5 RF6
SS1 22,2454 12,7462 3,2468 13,2468 3,7472 4,2475 11,7440 12,2454 2,7462
§S2 2,8723 13,3727 13,8730 11,7440 12,2454 2,7462 13,6228 4,1231 4,6233
SS3  4,5000 5,0000 5,0000 3,8730 4,3732 4,8734 4,5000 5,0000 5,0000
SS4 12,2454 12,7462 3,2468 4,5000 5,0000 5,0000 2,6220 3,1225 3,6228
SS5 4,3732 4,8734 15,0000 2,6220 3,1225 3,6228 4,5000 5,0000 5,0000

Decision makers individually evaluated the performance of each security system in Table 3. However,
since individual evaluations are based on different expert opinions, these evaluations need to be
combined appropriately. The Bonferroni aggregation operator is a powerful operator used in the
fuzzy decision-making process and was preferred due to the following advantages.

v Balances Extreme Evaluations: It produces a more balanced result by softening the extremes
between individual expert opinions.

v Better Reflects Dependent and Interactive Data: Instead of the classical arithmetic average, it
takes into account the interaction and dependency between evaluations.

v" Produces a Compromise Solution: If there are extremes between the opinions of decision
makers, it creates the most appropriate fuzzy decision matrix by finding the middle ground.

4.3 F-RAWEC method application

Benefit and cost normalized decision matrices are obtained by using Eqg. (12) and Eqg. (13). These
matrices are given in Table 10 and Table 11, respectively.

Table 10.
Benefit normalization matrix
RF1 RF2 RF3

SS1 00,5964 0,7469 1,0000 0,5530 0,7119 1,0000 0,4729 0,5286 0,5992
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$S2

0,4253

0,4965

0,5964

0,2548

0,2762

0,3108

0,4491

0,4491

0,4990

SS3

0,4965

0,5964

0,7469

0,2483

0,2548

0,2839

0,5992

0,6916

0,8176

sS4

0,2972

0,2972

0,3302

0,3427

0,3976

0,4735

0,6916

0,8176

1,0000

SS5

0,3720

0,4253

0,4965

0,2762

0,3108

0,3554

0,4607

0,5134

0,5798

RF4

RF5

RF6

SS1

0,6916

0,8176

1,0000

0,4106

0,4654

0,5372

0,6351

0,7767

1,0000

$S2

0,5798

0,6658

0,7817

0,6351

0,7767

1,0000

0,3772

0,4230

0,4814

SS3

0,4491

0,4491

0,4990

0,3579

0,3988

0,4503

0,3488

0,3488

0,3876

sS4

0,6916

0,8176

1,0000

0,3488

0,3488

0,3876

0,4814

0,5585

0,6651

SS5

0,4491

0,4607

0,5134

0,4814

0,5585

0,6651

0,3488

0,3488

0,3876

The benefit normalized values for the RF1 risk factor of the SS1 security system are

follows.

n11=(

1,4860 1,4860 1,4860

2,4917°1,9896"1,4860

All elements of the matrix are calculated similarly.

Table 11.

Cost normalization matrix

) = (0,5964 0,7469 1,0000)

obtained as

RF1

RF2

RF3

SS1

0,2972

0,3979

0,4983

0,2483

0,3488

0,4491

0,7494

0,8495

0,9496

$S2

0,4983

0,5986

0,6988

0,7990

0,8991

0,9747

0,9000

1,0000

1,0000

SS3

0,3979

0,4983

0,5986

0,8746

0,9747

1,0000

0,5492

0,6494

0,7494

SS4

0,9000

1,0000

1,0000

0,5244

0,6245

0,7246

0,4491

0,5492

0,6494

SS5

0,5986

0,6988

0,7990

0,6988

0,7990

0,8991

0,7746

0,8746

0,9747

RF4

RF5

RF6

SSs1

0,5492

0,6494

0,6494

0,7494

0,8495

0,3488

0,4491

0,5492

0,5492

$S2

0,6745

0,7746

0,3488

0,4491

0,5492

0,7246

0,8246

0,9247

0,6745

SS3

1,0000

1,0000

0,7746

0,8746

0,9747

0,9000

1,0000

1,0000

1,0000

SS4

0,5492

0,6494

0,9000

1,0000

1,0000

0,5244

0,6245

0,7246

0,5492

SS5

0,9747

1,0000

0,5244

0,6245

0,7246

0,9000

1,0000

1,0000

0,9747

The cost normalized values for the RF1 risk factor of the SS1 security system are obtained as follows.

All elements of the matrix are calculated in a similar way.

(fl,)" = (

1,4860 1,9896 2,4917

5,0000°5,0000°5,0000

) = (0,2972 0,3979 0,4983)

Then, deviations from the criterion weights are obtained by Eq. (14) and Eq. (15). These matrices are

given in Table 12 and Table 13, respectively.

Table 12.
Deviations from criteria weights
(Benefit)

RF1 RF2 RF3
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Ss1

0,0272

0,0393

0,0000

0,0335

0,0520

0,0000

0,0379

0,0780

0,1254

$S2

0,0387

0,0781

0,1263

0,0558

0,1307

0,2544

0,0396

0,0912

0,1568

SS3

0,0339

0,0626

0,0792

0,0563

0,1346

0,2643

0,0288

0,0511

0,0571

Ss4

0,0473

0,1090

0,2096

0,0492

0,1088

0,1943

0,0222

0,0302

0,0000

SS5

0,0423

0,0891

0,1575

0,0542

0,1245

0,2379

0,0388

0,0806

0,1315

RF4

RF5

RF6

Ss1

0,0387

0,0384

0,0000

0,0514

0,0715

0,1473

0,0245

0,0345

0,0000

$S2

0,0527

0,0704

0,0937

0,0318

0,0299

0,0000

0,0417

0,0891

0,1471

SS3

0,0691

0,1160

0,2150

0,0560

0,0805

0,1749

0,0436

0,1005

0,1738

Ss4

0,0387

0,0384

0,0000

0,0567

0,0872

0,1949

0,0348

0,0681

0,0950

SS5

0,0691

0,1136

0,2088

0,0452

0,0591

0,1065

0,0436

0,1005

0,1738

Deviations from the criterion weight for the RF1 risk factor of the SS1 security system are obtained

as follows.

Oy = ((1 —0,5964) * 0,0673 (1 —0,7469) * 0,1551 (1 —1) * 0,3129) = (0,0272 0,0393 0,0000)

All elements of the matrix are calculated similarly.

Table 13.

Deviations from criteria weights (Cost)

RF1

RF2

RF3

SS1

0,0473

0,0934

0,1570

0,0563

0,1176

0,2033

0,0180

0,0249

0,0473

$S2

0,0338

0,0623

0,0942

0,0150

0,0182

0,0093

0,0072

0,0000

0,0338

SS3

0,0405

0,0778

0,1256

0,0094

0,0046

0,0000

0,0324

0,0580

0,0405

SS4

0,0067

0,0000

0,0000

0,0356

0,0678

0,1017

0,0396

0,0746

0,0067

SS5

0,0270

0,0467

0,0629

0,0225

0,0363

0,0372

0,0162

0,0208

0,0270

RF4

RF5

RF6

SSs1

0,0158

0,0691

0,0949

0,1505

0,0306

0,0335

0,0479

0,0436

0,0850

$S2

0,0000

0,0534

0,0685

0,0967

0,0567

0,0737

0,1434

0,0185

0,0271

SS3

0,0784

0,0125

0,0000

0,0000

0,0196

0,0168

0,0081

0,0067

0,0000

SS4

0,1097

0,0691

0,0949

0,1505

0,0087

0,0000

0,0000

0,0319

0,0580

SS5

0,0079

0,0157

0,0053

0,0000

0,0414

0,0503

0,0876

0,0067

0,0000

Deviations from the criterion weight for the RF1 risk factor of the SS1 security system are obtained

as follows.

(d9,1)" = ((1-10,7028) x 0,0673 (1 — 0,6021) * 0,1551 (1 —0,5017)  0,3129)

= (0,0473 0,0934 0,1570)

All elements of the matrix are calculated in a similar way. The RAWEC method value is obtained with

Eqg. (16) and is given in Table 14.

Table 14.

Ranking of appropriate security systems
for risk factors
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9 (3y)’ Q. Q;  Rank
Ss1 0,2130 0,3137 0,2727 0,2648 0,4494 0,7023 -0,0080 0,1778 1,0240 0,2878 1
SS2 0,2603 0,4893 0,7782 0,1846 0,2498 03651 -0,5192 -0,3240 0,2356 -0,2633
SS3 0,2876 05452 09642 0,1212 0,1572 02121 -0,7167 -0,5524 -0,1849 -0,5185
SS4 0,2488 0,4417 0,6937 0,1916 0,2953 04400 -0,4429 -0,1986 0,4340 -0,1339
SS5 0,2931 055673 1,0161 0,1296 0,1594 0,1957 -0,7315 -0,5614 -0,2304 -0,5346

N w

The ranking value of the SS1 security system is obtained as follows.

~ 0,2648 — 0,2727 0,4494 — 0,3137 0,7023 —0,2130

Q1= (0,7023 +0,2727°0,4494 + 0,3137°0,2648 + 0,2130) = (=0,0080 0,1778 1,0240)

Table 14 evaluates the performance of different security systems and ranks them in terms of
effectiveness. When Q; values are examined, Physical Security Systems (SS1) have the highest impact
among security systems (Q; = 0,2878), while Emergency Response and Crisis Management Systems
(SS5) have the lowest performance (Q; = -0,5346). The results show that security systems should be
addressed with an integrated approach. In particular, it has been revealed that physical security
measures (SS1) play a critical role in preventing and responding to incidents. However, Software and
Cyber Security Systems (SS4) (Q; = -0,1339) have a high level of impact in terms of preventing digital
threats and should be considered as a complementary element to physical security measures.

In contrast, Monitoring and Surveillance Systems (SS2) (Q,;= -0,2633), Sensor-Based Early Warning
Systems (SS3) (Q;=-0,5185) and Emergency Response Systems (SS5) (Q;= -0,5346) showed relatively
lower performance. This situation reveals that these systems alone may be insufficient and should
be integrated with other security measures.

5. Discussion, practical and managerial implications

This study was conducted to evaluate various risk factors occurring in MetroCity and to determine
the effectiveness of security systems against these risks. As a result of the analysis, the importance
weights of the risk factors were determined and it was seen that the most critical risk was flash flood
(RF4=0,2143). This was followed by autonomous vehicle accident (RF2=0,1789) and crime rates and
public safety threat (RF3=0,1606). The lowest weighted risk factors were determined as network
failure (RF5=0,1443) and infectious disease cases (RF6=0,1485). These findings reveal the need for
the city administration and relevant stakeholders to focus their resources on the most critical risks.
In addition, the performance of security systems was determined by Q; values. While physical security
systems (SS1=0,2878) stood out as the most effective solution, software and cyber security systems
(554=-0,1339) came in second. While monitoring and surveillance systems (552=-0,2633) and sensor-
based early warning systems (S53=-0,5185) were found to be moderately effective, emergency
response and crisis management systems (SS5=-0,5346) had the lowest effectiveness.

5.1 Practical and Managerial Implications

v Restructuring Risk Management Strategies: The results showed that flash floods and traffic
accidents are the most critical risk factors. Therefore, municipalities and infrastructure
managers need to invest more in disaster management systems. The high-risk level of
autonomous vehicle accidents reveals the need to strengthen smart traffic systems and
signaling infrastructure.
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v Integration and Optimization of Security Systems: The determination of physical security
systems (SS1) as the most effective solution indicates that more investments should be made
in these systems in the future. The fact that emergency response and crisis management
systems (SS5) have the lowest level of effectiveness reveals the need to improve the
integration and operational efficiency of these systems.

v' Determination of Technological Investment Areas: Integrating advanced artificial intelligence
and machine learning-based systems with monitoring, sensor and software-based systems
can increase system effectiveness. The cyber security infrastructure needs to be strengthened
to effectively prevent cyber security threats (RF1).

v" Policy Recommendations for Decision Makers: Municipalities and decision makers should
focus on the most critical risk factors (RF4 and RF2) to ensure more effective allocation of
resources. In order to increase the effectiveness of security systems, the integration between
physical and software-based security systems should be strengthened. The findings of this
study contribute to both academic literature and provide guidance for practical applications.
Future studies can be supported by different decision-making methods, focusing on the
integration and increased effectiveness of security systems.

6. Conclusions, limitations and future directions

This study was conducted to evaluate various risk factors that may occur in MetroCity and to
determine the effectiveness of different security systems against these risks. The findings show that
flash floods and autonomous vehicle accidents are the most critical risk factors. The factors with the
lowest risk level are network failure and infectious disease cases. When evaluated in terms of security
systems, physical security systems were determined to be the most effective system, while
emergency response and crisis management systems were found to have the lowest performance.

6.1 Limitations of the Study

v Data Scope: The data used in the study is specific to MetroCity and different results may be
obtained in other cities.

v" Number of Decision Makers: The limited number of experts participating in the evaluation
process may limit the generalizability of the results.

v" Methodological Scope: The decision-making methods used are based on certain assumptions
and different results may be obtained when different methodologies are used.

6.2 Future Directions

v' Real-Time Data Usage
Risk management strategies can be developed by integrating real-time data and artificial intelligence-
supported analyses in city management processes.

v' Comparative Studies for Different Cities
Similar analyses can be conducted in cities with different geographical and demographic
characteristics to test the generalizability of the findings.
This study provides significant contributions to the optimization of security systems in the context of
smart city security. Future research is expected to offer more integrated solutions based on

technological developments and data analysis.
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