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The agent plays a pivotal role in the multi-agent environment. Previous 
studies have primarily focused on homogeneous agent collaboration, but the 
approaches used in these studies cannot be directly applied to heterogeneous 
agent collaboration. There is a need for a model that supports collaboration 
among heterogeneous agents, as real-world systems consist of agents with 
diverse shapes, functions, and tasks. This study proposes a framework that 
uses visual and vector observations to facilitate collaboration among 
heterogeneous agents. The seaport environment is simulated for this study. 
Visual observations and vector observations are employed to interpret 
signals from other agents and calculate distance between the agents in the 
environment. Two types of agents are used: the crane agent, which lifts and 
lowers heavy materials between the ship and the designated location, and the 
lifter agent, which transports bulky materials from the seaport to the 
storeroom. These agents are heterogeneous due to differences in size, 
capabilities, and tasks. Separate neural networks are trained for each agent. 
The results show that the proposed model outperforms the base model in 
terms of mean reward, extrinsic reward, episode length, and value estimation. 
In terms of value loss and policy loss, the proposed model performs similarly 
to the base model. 
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1. Introduction 
 
Due to the recent improvements in computing power, machine learning has become a significant 
field in Artificial Intelligence. Machine learning has three main types: Supervised learning, 
unsupervised learning, and reinforcement learning. Reinforcement learning is unique, unlike 
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supervised and unsupervised which work on labelled and unlabeled data. Instead, it is about an agent 
[1], [2] interacting with its environment. The agent observes the environment, takes an action, and 
receives a reward or penalty based on the action. The agent aims to maximize the total cumulative 
reward over time by learning the best sequence of actions. Fig. 1 shows the reinforcement learning 
framework. Numerous practical uses for reinforcement learning exist, such as gaming [3], robotics 
[4], autonomous driving [5], resource utilization [6] and many more. To process high-dimensional 
input data, such as images and raw sensor data, Deep Reinforcement Learning is well-suited for 
effectively managing these kinds of problems [7], where traditional reinforcement learning 
techniques may struggle. Deep Reinforcement Learning (DRL) is a subfield of machine learning and 
reinforcement learning that combines reinforcement learning techniques with deep neural networks 
to enable more sophisticated and complex learning tasks. The achievement of DRL in playing Go [8] 
and video games [9] is very impressive and shows it can make decisions even better than humans. 
This success has sparked significant interest in extending its application to real-world tasks. 

 
Fig. 1. Reinforcement learning framework. 

In today’s era, deep reinforcement learning serves as a beacon of promise in the field of artificial 
intelligence. However, as the DRL focus moves toward solving real-world applications, the 
transformation from a single agent to a multi-agent system [10] becomes essential. Multi-agent 
system makes things more complicated because they need agents to work together, coordinate with 
each other and achieve common goals. While single-agent techniques have shown exceptional 
success, applying these theories to cooperative multi-agent systems presents impressive challenges 
[11]. The inherent challenges, such as managing the curse of dimensionality and multi-agent credit 
assignment, need innovative techniques designed for multi-agent systems. 
Recent advancements in single-agent reinforcement learning systems have pushed the boundaries 
of what is achievable. However, moving to a multi-agent system demands a substantial shift [12]. The 
emphasis on effective communication and coordination in heterogeneous multi-agent environments 
underscores the necessity for Multi-Agent Deep Reinforcement Learning (MADRL). However, the 
existing MADRL approaches satisfy homogeneous agent environments, where all the agents have the 
same size, functionalities, and objectives. In many real-world scenarios, agents are heterogeneous 
[13], with diverse objectives and different sets of characteristics that create recent problems and 
need specialized solutions. 
In this paper, we investigate the challenges and opportunities in Multi-Agent Deep Reinforcement 
Learning (MADRL), particularly focusing on the issues of non-stationarity and collaboration among 
heterogeneous agents. Agents cooperate and interact to conduct tasks in real-world situations, 
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which presents unique challenges. Promising directions for future research in MADRL include 
addressing the problem of nonstationary and improving communication and collaboration among 
agents. Techniques for communication among homogeneous agents are not transferable to 
heterogeneous agents. The authors in [14] and [15] introduced MADRL methods for the collaboration 
of multiple agents, focusing on homogeneous agents expected to optimize a joint reward signal. 
However, in many real-world applications, agents are heterogeneous with varying objectives and 
environments [13]. The methods used in previous studies for homogeneous agents to solve these 
problems cannot be applied to heterogeneous agents [13]. Thus, there is a need to introduce MADRL 
methods to address non-stationarity and collaboration with heterogeneous agents. We propose a 
novel technique that effectively manages coordination and collaboration among heterogeneous 
multiagent systems, paving the way for advancement in real-world applications in multi-agent 
systems. 
This paper presents a novel framework for facilitating collaboration among heterogeneous agents in 
multi-agent systems using deep reinforcement learning. It introduces an innovative approach that 
combines visual and vector observations with camera and ray perception sensors, enabling effective 
communication between agents of different sizes, capabilities, and tasks. The proposed model, 
evaluated in a simulated seaport environment, employs separate neural networks for each type of 

agent—crane and lifter—resulting in improved performance over the base model in terms of mean 
reward, episode length, value estimation, and extrinsic reward. The framework’s versatility is 
demonstrated through its potential applications in diverse real-world scenarios, such as shopping 
malls, seaports, airports, digital factories, and supermarkets. 
This paper is organized as follows: Section II describes the detailed literature review, explaining the 
current research state and identifying the gaps, Section III provides a comprehensive proposed 
model, architecture, and implementation. Section IV describes the experimental result and 
evaluation of the proposed model and compares it with the base model. The last section, Section V 
talks about the conclusion of the paper and future work. 

2. Literature Review:  
There is a long history of ongoing research at the interface of reinforcement learning and multi-agent 
systems. Stone and Veloso [16] conducted one of the first studies in the field when they examined 
multi-agent systems from a machine learning standpoint and categorized the evaluated literature 
based on communication abilities and heterogeneous and homogeneous agent topologies. Due to 
the vast amount of network engagements, a variety of emerging technologies, including 5G 
networks, vehicular networks, unmanned aerial vehicle (UAV) networks, and the Internet of Things, 
will become diversified and decentralized. Each entity makes its own local decision in dynamic and 
unpredictable network situations to learn an optimal decision-making policy by interacting with 
unknown surroundings and to optimize network performance using learning algorithms such as 
single agent Reinforcement Learning (RL) or Deep Reinforcement Learning (DRL) [17]. However, such 
an approach may result in non-stationarity and is unable to capture network entity competition or 
cooperation. By enabling each network entity to determine its optimal policy, Multi-Agent 
Reinforcement Learning (MARL) improves the learning efficiency of network entities and addresses 
a range of network development challenges. In a recent study [18], DDMAC (Dynamic Data driven 
Maintenance Action Control) is applied to determine optimal system-level Inspection and 
Maintenance policies for systems with interconnected fatigue deterioration processes among 
components. A survey on MARL applications in the upcoming Internet generation was suggested by 
the authors of [19]. Specifically, they presented single-agent RL, and then discussed how MARL 
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addresses several issues that would come up on the Internet in the future. The difficulties include 
packet routing, content caching, network access, transmit power control, computer offloading, 
trajectory design for UAV assisted networks, and network security concerns. 
Deep reinforcement learning has been extremely useful in complex single-agent tasks in recent years, 
and it has just recently been applied to multi-agent domains [20]. For agents to effectively develop 
coordination, they require knowledge regarding the significance of ambient items to both them and 
other agents. For MARL, this is the most common challenge. A method called MAGNet (Multi-Agent 
Graph Network) was presented by the authors [21] for acquiring pertinent data in the form of a 
relevant graph. There are two phases to this method. The first stage involves learning a relevance 
graph. The actor-critical reinforcement learning network, which makes decisions for the agent and 
integrates message transmission methods, receives the relevance graph and associated state 
information in the second stage. They employed the well-known Pommerman game, which is 
frequently used to assess multi-agent systems, and the synthetic predator-prey game to evaluate the 
MAGNet approach. The performance of their method was noticeably higher than that of the most 
advanced MARL methods. Additionally, they show how well message forwarding, graph sharing, and 
self-attention work. In [22] suggests a robust POMDP strategy that takes model uncertainty into 
account. A technique known as the Deep Deterministic Policy Gradient (DDPG) is used in [23] to 
optimize quality inspection and maintenance in connection to industrial networks. 
In multi-agent reinforcement learning, to maximize cooperative policies and manage unstable 
learning problems, agents need to learn communication protocols. Current systems based on actor-
critic networks address agent communication [24]. It is difficult to comprehend the dynamic and non-
stationary environment when the policies of other agents alter, though. Learning robust policies and 
improving sample efficiency are challenges for these methods. They offer a technique that considers 
agent communication when learning cooperative norms in multi-agent systems. To centrally train 
decentralized policies, the suggested method makes use of deterministic policy gradients and actor-
critic networks based on recurrent neural networks [25]. Actor networks allow agents to decide what 
to do next and to communicate with each other via forward and backward pathways. With the help 
of gradient signals based on each actor network’s contribution to the global reward, the critic 
network helps the actor networks learn. It is suggested to utilize auxiliary prediction networks to 
approximate state transitions and the reward function to tackle partial observe ability and unstable 
learning difficulties. By contrasting it with existing multi-agent reinforcement learning techniques in 
terms of learning efficiency and goal attainment during the test phase, they were able to show the 
usefulness and superiority of the novel strategy. It appears from the data that the suggested 
approach performed better than the substitute. 
Multi-agent motion planning research now in existence can be categorized into two types: 
decentralized and centralized approaches [26] (where the objective is to guide every agent to its 

intended destination while providing information about each agent’s position, velocity, and target 
location). The split of computing effort across multiple agents is what makes decentralized systems 
scalable. In centralized systems, the number of agents determines how much they can scale. As a 
solution to the multi-agent motion planning problem, the authors suggested a novel goal-distance-
based proxy reward for the GA3C-CADRL approach. This algorithm uses a more cautious approach, 
which reduces the number of collisions [27]. To address distributed motion planning issues in 
dynamic, crowded environments, they suggested combining deep reinforcement learning (DRL) with 
force-based motion planning (FMP) in a hybrid manner. According to simulations, their suggested 
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solution outperforms DRL by 50% and requires up to 75% less extra time to complete an objective 
than FMP. 
 
 

3. Proposed Model: 
Previous research focuses on homogeneous multiagent systems (MAS). However, real-world 
applications often require heterogeneous multi-agent systems. The collaboration between 
homogeneous and heterogeneous agents differs due to variations in size, capabilities, and 
architecture. Available methods for homogeneous agents are inapplicable to heterogeneous agents, 
necessitating a novel approach. This research presents a framework for collaboration between 
heterogeneous agents, leveraging visual and vector observations combined with camera and ray 
perception sensors. These components do not require any specific size or architecture but enable 
effective communication among heterogeneous agents. Agents broadcast visual signals, which 
receiver agents observe using cameras or sensors. This method is applicable to all kinds of 
heterogeneous agent scenarios in the real world. 
To tackle the communication issue among heterogeneous agents, this study employs visual and 
vector observations. Visual observations capture signals from other agents and are used to detect 
locations for tasks like dropping and picking up heavy material. To enable coordinated operations, 
every agent has a camera component that allows it to see its surroundings and decipher signals from 
other agents. Vector observations are numerical and commonly used for computing distances 
between agents and obstacles and as well as determining directions to specific points, making them 
particularly useful in environments with heterogeneous agents. Proximal Policy Optimization (PPO) 
is a gradient-based algorithm optimized using the Adam optimizer. It employs a three-layered 
convolutional neural network (CNN) with a ReLU activation function to process observations and 
determine actions. The neural network has three hidden layers, each with 256 units, and an output 
layer designed to correspond to the agent’s specific action set. For example, the lifter agent has four 
actions (left, right, forward, backward), while the crane agent can perform six actions (up, down, left, 
right, drop, pick). The Adam optimizer is used to optimize action values, and the ReLU activation 
function accelerates training convergence. PPO’s scalability and effectiveness make it a popular 
choice for various deep reinforcement learning applications. 
The proposed system model consists of two agents: a crane agent and a lifter agent. A lifter agent 
observes the environment and acts and until it reaches the crane agent, the crane agent observes, at 
which point it broadcasts a visual signal. This broadcasted signal then observes the crane agent, which 
acts and picks up heavy material and keeps it on the lifter agent. The crane agent also broadcasts a 
visual signal and informs the lifter agent to move toward the storage area and drop off the material. 
This process continues until all the episodes are completed. The overall system model is 
demonstrated in Fig. 2, and the detailed interaction between agents is illustrated in Fig. 3. 
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Fig. 2. System model 1. 

 
Fig. 3. System model 2. 

Different components of the proposed system are described here: 

• Learning Environment: The learning environment is created in Unity 3D and simulates the 
seaport with moving objects and buildings making it realistic and dynamic. The learning 
environment is 500 x 500 meters with agents equipped with ray perception sensors for vector 
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observations and a camera for visual observations. For enhancing the realism in the 
environment Unity 3D rigid body is used. ML Agent toolkit is used for the implementation of 
reinforcement learning. It includes components like Brain, Academy and Agents, which are 
essential for training and controlling the agents in the Unity environment. Fig. 4 shows the 
learning environment. 

 
Fig. 4. Learning Environment. 

• Agent: Crane and Lifter agents are used in the proposed environment. The Crane agent picks 
the materials from the seaport and places them on the lifter agent and then the lifter agent 
navigates and moves toward the storage area, where it drops off the materials. These actions 
are managed through visual and vector observations. 

The implementation of the proposed model consists of using Unity 3D to create the learning 
environment and ML Agent toolkit for facilitating reinforcement learning. The training process uses 
episodic procedures, with 10,000 time-steps in each episode. Parameters such as batch size, buffer 
size, number of layers, and hidden units are optimized to ensure effective learning. Table I shows the 
respective hyper parameters and their corresponding values. If the lifter agent collides with 
obstacles, the episode ends too soon and is followed by fresh episodes with different actions and 
policies. The decision requester component serves as the agent’s brain, collecting observations and 
making decisions based on PPO algorithm neural network outputs. For successful actions such as 
correctly picking and placing the heavy material, a positive incentive is awarded; otherwise, the agent 
will be penalized. 

TABLE I 
TRAINING PARAMETERS 

Parameter Value 

Batch Size 2048 

Buffer Size 16384 

Hidden Layers 3 

Hidden Units 256 

Max Timesteps 15000000 

 
Algorithm 1 outlines the pseudo-code and working mechanism for the proposed model. 
Algorithm 1 Pseudo code of proposed model 
1: while episodes do not end do 

2: while Time steps do not end do 
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3: while Distance of crane ≥ 0 do 
4: Lifter agent collects observations 

5: Select action 
6: Broadcast visual signal (Lifter) 
7: while Heavy material is not placed do 

8: Crane agent collects observations 
9: Act 
10: Broadcast visual signal (Crane) 
11: end while 
12: end while 

13: while Distance of store = 0 do 
14: Lifter agent collects observations 
15: Take action 
16: Drop heavy material 

17: end while 
18: end while 
19: end while 
 
Reward structures are important for agent performance. Crane agents get positive rewards for 
correctly picking heavy material or correctly placing heavy material and successfully interpreting 
signals. If the crane agent places the heavy material in the wrong place or drops away the heavy 
material from the lifter agent. The crane agent would get a heavy penalty as shown in Table II, 
because the safety of the other agents and objects is also very crucial in the environment. Equation 
1 below is used to compute the total reward for the crane agent. 

rc = (rplace + rpick + rsignal) − (rdrop + raway) (1) 
TABLE II 

REWARDS GIVEN TO CRANE AGENT 

Event Reward 

Smoothly picking the heavy materials 0.5 

Correctly placing the heavy material on the lifter agent 0.5 

Incorrectly placing the heavy material on the lifter agent -0.7 

Heavy material dropped away from the lifter -0.7 

 
Similarly, the lifter agent gets a positive reward, if it reaches to destination store or if it reaches to 
the crane agent after dropping the heavy material at the storage area or if it gives a correct visual 
signal. If the lifter agent collides with an obstacle or building, it will get a negative reward as shown 
in Table III. Equation 2 below is used to calculate the total cumulative reward for the lifter agent. 

rl = (rc + rs + rsignal) − (rb + ro) (2) 
TABLE III 

REWARDS GIVEN TO LIFTER AGENT 

Event Reward 

Agent reaches to destination store 0.5 

Reaches to the crane agent after agent hits with some. 
Obstacle 

-0.3 
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Collides with some building -0.3 

Agent gives correct visual signal 0.5 

 
The proposed framework is applicable in various real-world scenarios, including shopping malls, 
seaports, airports, digital factories, and supermarkets. Its ability to facilitate communication between 
heterogeneous agents makes it versatile and valuable across multiple domains. 

4. EXPERIMENTAL RESULTS AND EVALUATION 
This section describes the outcomes of the proposed model and the parameters that were assessed 
throughout the study. 
The mean reward is the average of the rewards given to agents in each episode. This metric 
demonstrates how well the proposed model performs during the training. A higher mean reward 
means the agents have received sufficient training. Fig. 5 indicates that the proposed model 
outperforms the base model, with agents trained under the proposed model getting the maximum 
average reward of 0.02 compared to -0.28 for the base model. 

 
Fig. 5. Mean Reward. 

Episode length is the number of time-steps an agent executes its task without colliding with any other 
object or failing. It indicates how long the agent can perform their task without making any mistakes. 
Agents trained with the proposed had longer episodes of 400 and the agents trained with the base 
model had episodes of 350 as shown in Fig. 6. It demonstrates the proposed model has a longer 
duration to complete its task without colliding with anything compared to the base model. 

 
Fig. 6. Episode length. 

Policy loss means, how the agent precisely learns the policy of the expert or the predefined set of 
policies. At the start, the agents have high policy loss, with the passage of time they learn the policy 
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well and find the optimal policy. Fig. 7 shows the graph value decreases over time; it learns and 
adopts the policy and does not violate the predefined policy or expert policy. Both the proposed 
model and base model perform similarly in this metric. 

 
Fig. 7. Policy loss. 

The value estimate is about predicting the future reward of each state. A high-value estimate means 
the state is good and it will lead to a maximum reward of the state and a low-value estimate means 
the state is bad and it will lead to minimum reward. Fig. 8 indicates the proposed model better 
predicts the value of the states over the base model. 

 
Fig. 8. Value estimate. 

Value loss is the difference between the actual value of the state and the value estimated by the 
agent of the state. A high value loss means the agent value estimation of states is mostly wrong and 
a low-value loss means the agent value estimation of states is often correct. Fig. 9 shows proposed 
model has low value loss compared to the base model. 
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Fig. 9. Value loss. 

Extrinsic rewards are the feedback which receives the agent from the environment. It shows how the 
agent performs its actions according to the predefined policy. This feedback helps the agent to 
maximize the reward received. Fig. 10 shows the proposed model performs well compared to the 
base model, the proposed model achieves a maximum extrinsic reward of 0.031 and whereas the 
base model achieves -0.27. 

 
Fig. 10. Extrinsic Reward. 

5. CONCLUSION 
In Multi-Agent Systems (MAS), the role of agents is important. However, in many real-world 
applications, agents have different architectures, sizes, and tasks. Past research has focused on the 
cooperation of homogeneous agents and proposed various deep reinforcement learning techniques, 
which are inapplicable to heterogeneous agents due to their variation in size, architecture, and other 
factors. In this paper, we propose a novel approach using the PPO algorithm, along with visual and 
vector observations, for the collaboration of heterogeneous agents. The learning environment is 
created in Unity 3D. The results indicate that the proposed model outperforms the base model in 
terms of mean reward, extrinsic reward, and episode length. In terms of policy loss, both models 
perform similarly. 
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