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The agent plays a pivotal role in the multi-agent environment. Previous
studies have primarily focused on homogeneous agent collaboration, but the
approaches used in these studies cannot be directly applied to heterogeneous
agent collaboration. There is a need for a model that supports collaboration
among heterogeneous agents, as real-world systems consist of agents with
diverse shapes, functions, and tasks. This study proposes a framework that
uses visual and vector observations to facilitate collaboration among
heterogeneous agents. The seaport environment is simulated for this study.
Visual observations and vector observations are employed to interpret
signals from other agents and calculate distance between the agents in the
environment. Two types of agents are used: the crane agent, which lifts and
lowers heavy materials between the ship and the designated location, and the
lifter agent, which transports bulky materials from the seaport to the
storeroom. These agents are heterogeneous due to differences in size,
capabilities, and tasks. Separate neural networks are trained for each agent.
The results show that the proposed model outperforms the base model in
terms of mean reward, extrinsic reward, episode length, and value estimation.
In terms of value loss and policy loss, the proposed model performs similarly
to the base model.

1. Introduction

Due to the recent improvements in computing power, machine learning has become a significant
field in Artificial Intelligence. Machine learning has three main types: Supervised learning,
unsupervised learning, and reinforcement learning. Reinforcement learning is unique, unlike
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supervised and unsupervised which work on labelled and unlabeled data. Instead, it is about an agent
[1], [2] interacting with its environment. The agent observes the environment, takes an action, and
receives a reward or penalty based on the action. The agent aims to maximize the total cumulative
reward over time by learning the best sequence of actions. Fig. 1 shows the reinforcement learning
framework. Numerous practical uses for reinforcement learning exist, such as gaming [3], robotics
[4], autonomous driving [5], resource utilization [6] and many more. To process high-dimensional
input data, such as images and raw sensor data, Deep Reinforcement Learning is well-suited for
effectively managing these kinds of problems [7], where traditional reinforcement learning
techniques may struggle. Deep Reinforcement Learning (DRL) is a subfield of machine learning and
reinforcement learning that combines reinforcement learning techniques with deep neural networks
to enable more sophisticated and complex learning tasks. The achievement of DRL in playing Go [8]
and video games [9] is very impressive and shows it can make decisions even better than humans.
This success has sparked significant interest in extending its application to real-world tasks.
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Fig. 1. Reinforcement learning framework.
In today’ s era, deep reinforcement learning serves as a beacon of promise in the field of artificial
intelligence. However, as the DRL focus moves toward solving real-world applications, the
transformation from a single agent to a multi-agent system [10] becomes essential. Multi-agent
system makes things more complicated because they need agents to work together, coordinate with
each other and achieve common goals. While single-agent techniques have shown exceptional
success, applying these theories to cooperative multi-agent systems presents impressive challenges
[11]. The inherent challenges, such as managing the curse of dimensionality and multi-agent credit
assignment, need innovative techniques designed for multi-agent systems.
Recent advancements in single-agent reinforcement learning systems have pushed the boundaries
of what is achievable. However, moving to a multi-agent system demands a substantial shift [12]. The
emphasis on effective communication and coordination in heterogeneous multi-agent environments
underscores the necessity for Multi-Agent Deep Reinforcement Learning (MADRL). However, the
existing MADRL approaches satisfy homogeneous agent environments, where all the agents have the
same size, functionalities, and objectives. In many real-world scenarios, agents are heterogeneous
[13], with diverse objectives and different sets of characteristics that create recent problems and
need specialized solutions.
In this paper, we investigate the challenges and opportunities in Multi-Agent Deep Reinforcement
Learning (MADRL), particularly focusing on the issues of non-stationarity and collaboration among
heterogeneous agents. Agents cooperate and interact to conduct tasks in real-world situations,
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which presents unique challenges. Promising directions for future research in MADRL include
addressing the problem of nonstationary and improving communication and collaboration among
agents. Techniques for communication among homogeneous agents are not transferable to
heterogeneous agents. The authors in [14] and [15] introduced MADRL methods for the collaboration
of multiple agents, focusing on homogeneous agents expected to optimize a joint reward signal.
However, in many real-world applications, agents are heterogeneous with varying objectives and
environments [13]. The methods used in previous studies for homogeneous agents to solve these
problems cannot be applied to heterogeneous agents [13]. Thus, there is a need to introduce MADRL
methods to address non-stationarity and collaboration with heterogeneous agents. We propose a
novel technique that effectively manages coordination and collaboration among heterogeneous
multiagent systems, paving the way for advancement in real-world applications in multi-agent
systems.
This paper presents a novel framework for facilitating collaboration among heterogeneous agents in
multi-agent systems using deep reinforcement learning. It introduces an innovative approach that
combines visual and vector observations with camera and ray perception sensors, enabling effective
communication between agents of different sizes, capabilities, and tasks. The proposed model,
evaluated in a simulated seaport environment, employs separate neural networks for each type of
agent—crane and lifter—resulting in improved performance over the base model in terms of mean
reward, episode length, value estimation, and extrinsic reward. The framework’s versatility is
demonstrated through its potential applications in diverse real-world scenarios, such as shopping
malls, seaports, airports, digital factories, and supermarkets.
This paper is organized as follows: Section Il describes the detailed literature review, explaining the
current research state and identifying the gaps, Section Il provides a comprehensive proposed
model, architecture, and implementation. Section IV describes the experimental result and
evaluation of the proposed model and compares it with the base model. The last section, Section V
talks about the conclusion of the paper and future work.

2. Literature Review:
There is a long history of ongoing research at the interface of reinforcement learning and multi-agent
systems. Stone and Veloso [16] conducted one of the first studies in the field when they examined
multi-agent systems from a machine learning standpoint and categorized the evaluated literature
based on communication abilities and heterogeneous and homogeneous agent topologies. Due to
the vast amount of network engagements, a variety of emerging technologies, including 5G
networks, vehicular networks, unmanned aerial vehicle (UAV) networks, and the Internet of Things,
will become diversified and decentralized. Each entity makes its own local decision in dynamic and
unpredictable network situations to learn an optimal decision-making policy by interacting with
unknown surroundings and to optimize network performance using learning algorithms such as
single agent Reinforcement Learning (RL) or Deep Reinforcement Learning (DRL) [17]. However, such
an approach may result in non-stationarity and is unable to capture network entity competition or
cooperation. By enabling each network entity to determine its optimal policy, Multi-Agent
Reinforcement Learning (MARL) improves the learning efficiency of network entities and addresses
a range of network development challenges. In a recent study [18], DDMAC (Dynamic Data driven
Maintenance Action Control) is applied to determine optimal system-level Inspection and
Maintenance policies for systems with interconnected fatigue deterioration processes among
components. A survey on MARL applications in the upcoming Internet generation was suggested by
the authors of [19]. Specifically, they presented single-agent RL, and then discussed how MARL
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addresses several issues that would come up on the Internet in the future. The difficulties include
packet routing, content caching, network access, transmit power control, computer offloading,
trajectory design for UAV assisted networks, and network security concerns.

Deep reinforcement learning has been extremely useful in complex single-agent tasks in recent years,
and it has just recently been applied to multi-agent domains [20]. For agents to effectively develop
coordination, they require knowledge regarding the significance of ambient items to both them and
other agents. For MARL, this is the most common challenge. A method called MAGNet (Multi-Agent
Graph Network) was presented by the authors [21] for acquiring pertinent data in the form of a
relevant graph. There are two phases to this method. The first stage involves learning a relevance
graph. The actor-critical reinforcement learning network, which makes decisions for the agent and
integrates message transmission methods, receives the relevance graph and associated state
information in the second stage. They employed the well-known Pommerman game, which is
frequently used to assess multi-agent systems, and the synthetic predator-prey game to evaluate the
MAGNet approach. The performance of their method was noticeably higher than that of the most
advanced MARL methods. Additionally, they show how well message forwarding, graph sharing, and
self-attention work. In [22] suggests a robust POMDP strategy that takes model uncertainty into
account. A technique known as the Deep Deterministic Policy Gradient (DDPG) is used in [23] to
optimize quality inspection and maintenance in connection to industrial networks.

In multi-agent reinforcement learning, to maximize cooperative policies and manage unstable
learning problems, agents need to learn communication protocols. Current systems based on actor-
critic networks address agent communication [24]. It is difficult to comprehend the dynamic and non-
stationary environment when the policies of other agents alter, though. Learning robust policies and
improving sample efficiency are challenges for these methods. They offer a technique that considers
agent communication when learning cooperative norms in multi-agent systems. To centrally train
decentralized policies, the suggested method makes use of deterministic policy gradients and actor-
critic networks based on recurrent neural networks [25]. Actor networks allow agents to decide what
to do next and to communicate with each other via forward and backward pathways. With the help
of gradient signals based on each actor network’s contribution to the global reward, the critic
network helps the actor networks learn. It is suggested to utilize auxiliary prediction networks to
approximate state transitions and the reward function to tackle partial observe ability and unstable
learning difficulties. By contrasting it with existing multi-agent reinforcement learning techniques in
terms of learning efficiency and goal attainment during the test phase, they were able to show the
usefulness and superiority of the novel strategy. It appears from the data that the suggested
approach performed better than the substitute.

Multi-agent motion planning research now in existence can be categorized into two types:
decentralized and centralized approaches [26] (where the objective is to guide every agent to its
intended destination while providing information about each agent’ s position, velocity, and target
location). The split of computing effort across multiple agents is what makes decentralized systems
scalable. In centralized systems, the number of agents determines how much they can scale. As a
solution to the multi-agent motion planning problem, the authors suggested a novel goal-distance-
based proxy reward for the GA3C-CADRL approach. This algorithm uses a more cautious approach,
which reduces the number of collisions [27]. To address distributed motion planning issues in
dynamic, crowded environments, they suggested combining deep reinforcement learning (DRL) with
force-based motion planning (FMP) in a hybrid manner. According to simulations, their suggested
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solution outperforms DRL by 50% and requires up to 75% less extra time to complete an objective
than FMP.

3. Proposed Model:
Previous research focuses on homogeneous multiagent systems (MAS). However, real-world
applications often require heterogeneous multi-agent systems. The collaboration between
homogeneous and heterogeneous agents differs due to variations in size, capabilities, and
architecture. Available methods for homogeneous agents are inapplicable to heterogeneous agents,
necessitating a novel approach. This research presents a framework for collaboration between
heterogeneous agents, leveraging visual and vector observations combined with camera and ray
perception sensors. These components do not require any specific size or architecture but enable
effective communication among heterogeneous agents. Agents broadcast visual signals, which
receiver agents observe using cameras or sensors. This method is applicable to all kinds of
heterogeneous agent scenarios in the real world.
To tackle the communication issue among heterogeneous agents, this study employs visual and
vector observations. Visual observations capture signals from other agents and are used to detect
locations for tasks like dropping and picking up heavy material. To enable coordinated operations,
every agent has a camera component that allows it to see its surroundings and decipher signals from
other agents. Vector observations are numerical and commonly used for computing distances
between agents and obstacles and as well as determining directions to specific points, making them
particularly useful in environments with heterogeneous agents. Proximal Policy Optimization (PPO)
is a gradient-based algorithm optimized using the Adam optimizer. It employs a three-layered
convolutional neural network (CNN) with a ReLU activation function to process observations and
determine actions. The neural network has three hidden layers, each with 256 units, and an output
layer designed to correspond to the agent’s specific action set. For example, the lifter agent has four
actions (left, right, forward, backward), while the crane agent can perform six actions (up, down, left,
right, drop, pick). The Adam optimizer is used to optimize action values, and the ReLU activation
function accelerates training convergence. PPQ’s scalability and effectiveness make it a popular
choice for various deep reinforcement learning applications.
The proposed system model consists of two agents: a crane agent and a lifter agent. A lifter agent
observes the environment and acts and until it reaches the crane agent, the crane agent observes, at
which point it broadcasts a visual signal. This broadcasted signal then observes the crane agent, which
acts and picks up heavy material and keeps it on the lifter agent. The crane agent also broadcasts a
visual signal and informs the lifter agent to move toward the storage area and drop off the material.
This process continues until all the episodes are completed. The overall system model is
demonstrated in Fig. 2, and the detailed interaction between agents is illustrated in Fig. 3.
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Fig. 3. System model 2.
Different components of the proposed system are described here:

e Learning Environment: The learning environment is created in Unity 3D and simulates the
seaport with moving objects and buildings making it realistic and dynamic. The learning
environment is 500 x 500 meters with agents equipped with ray perception sensors for vector
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observations and a camera for visual observations. For enhancing the realism in the
environment Unity 3D rigid body is used. ML Agent toolkit is used for the implementation of
reinforcement learning. It includes components like Brain, Academy and Agents, which are
essential for training and controlling the agents in the Unity environment. Fig. 4 shows the
learning environment

Fig. 4. Learning Environment.
Agent: Crane and Lifter agents are used in the proposed environment. The Crane agent picks
the materials from the seaport and places them on the lifter agent and then the lifter agent
navigates and moves toward the storage area, where it drops off the materials. These actions
are managed through visual and vector observations.

The implementation of the proposed model consists of using Unity 3D to create the learning
environment and ML Agent toolkit for facilitating reinforcement learning. The training process uses
episodic procedures, with 10,000 time-steps in each episode. Parameters such as batch size, buffer
size, number of layers, and hidden units are optimized to ensure effective learning. Table | shows the
respective hyper parameters and their corresponding values. If the lifter agent collides with
obstacles, the episode ends too soon and is followed by fresh episodes with different actions and
policies. The decision requester component serves as the agent’s brain, collecting observations and
making decisions based on PPO algorithm neural network outputs. For successful actions such as
correctly picking and placing the heavy material, a positive incentive is awarded; otherwise, the agent
will be penalized.

TABLE |

TRAINING PARAMETERS
Parameter Value
Batch Size 2048
Buffer Size 16384
Hidden Layers 3
Hidden Units 256
Max Timesteps 15000000

Algorithm 1 outlines the pseudo-code and working mechanism for the proposed model.
Algorithm 1 Pseudo code of proposed model
1: while episodes do not end do

2: while Time steps do not end do
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3: while Distance of crane > 0 do
4: Lifter agent collects observations
5: Select action
6: Broadcast visual signal (Lifter)
7: while Heavy material is not placed do
8: Crane agent collects observations
9: Act
10: Broadcast visual signal (Crane)
11: end while
12: end while
13: while Distance of store =0 do
14: Lifter agent collects observations
15: Take action
16: Drop heavy material
17: end while
18: end while
19: end while

Reward structures are important for agent performance. Crane agents get positive rewards for
correctly picking heavy material or correctly placing heavy material and successfully interpreting
signals. If the crane agent places the heavy material in the wrong place or drops away the heavy
material from the lifter agent. The crane agent would get a heavy penalty as shown in Table II,
because the safety of the other agents and objects is also very crucial in the environment. Equation
1 below is used to compute the total reward for the crane agent.

rc = (rplace + rpick + rsignal) — (rdrop + raway) (1)

TABLE Il
REWARDS GIVEN TO CRANE AGENT
Event Reward
Smoothly picking the heavy materials 0.5
Correctly placing the heavy material on the lifter agent 0.5

Incorrectly placing the heavy material on the lifter agent | -0.7
Heavy material dropped away from the lifter -0.7

Similarly, the lifter agent gets a positive reward, if it reaches to destination store or if it reaches to
the crane agent after dropping the heavy material at the storage area or if it gives a correct visual
signal. If the lifter agent collides with an obstacle or building, it will get a negative reward as shown
in Table Ill. Equation 2 below is used to calculate the total cumulative reward for the lifter agent.

rl = (rc + rs + rsignal) — (rb + ro) (2)

TABLE Il
REWARDS GIVEN TO LIFTER AGENT
Event Reward
Agent reaches to destination store 0.5
Reaches to the crane agent after agent hits with some. -0.3
Obstacle
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Collides with some building -0.3

Agent gives correct visual signal 0.5

The proposed framework is applicable in various real-world scenarios, including shopping malls,
seaports, airports, digital factories, and supermarkets. Its ability to facilitate communication between
heterogeneous agents makes it versatile and valuable across multiple domains.

4. EXPERIMENTAL RESULTS AND EVALUATION
This section describes the outcomes of the proposed model and the parameters that were assessed
throughout the study.
The mean reward is the average of the rewards given to agents in each episode. This metric
demonstrates how well the proposed model performs during the training. A higher mean reward
means the agents have received sufficient training. Fig. 5 indicates that the proposed model
outperforms the base model, with agents trained under the proposed model getting the maximum
average reward of 0.02 compared to -0.28 for the base model.

= Proposed Model

= Base Model

Cumulative Reward

Time Steps
Fig. 5. Mean Reward.
Episode length is the number of time-steps an agent executes its task without colliding with any other
object or failing. It indicates how long the agent can perform their task without making any mistakes.
Agents trained with the proposed had longer episodes of 400 and the agents trained with the base
model had episodes of 350 as shown in Fig. 6. It demonstrates the proposed model has a longer
duration to complete its task without colliding with anything compared to the base model.

M

Episode Length

® Proposed Model
m Base Model

Time Steps
Fig. 6. Episode length.
Policy loss means, how the agent precisely learns the policy of the expert or the predefined set of
policies. At the start, the agents have high policy loss, with the passage of time they learn the policy
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well and find the optimal policy. Fig. 7 shows the graph value decreases over time; it learns and
adopts the policy and does not violate the predefined policy or expert policy. Both the proposed

model and base model perform similarly in this metric.
® Proposed Maodel

m Base Model

WA

Policy Loss

Time Steps
Fig. 7. Policy loss.
The value estimate is about predicting the future reward of each state. A high-value estimate means
the state is good and it will lead to a maximum reward of the state and a low-value estimate means
the state is bad and it will lead to minimum reward. Fig. 8 indicates the proposed model better

predicts the value of the states over the base model.

\Am

Value Estimate

B Proposed Model

® Base Model

Time Steps
Fig. 8. Value estimate.
Value loss is the difference between the actual value of the state and the value estimated by the
agent of the state. A high value loss means the agent value estimation of states is mostly wrong and
a low-value loss means the agent value estimation of states is often correct. Fig. 9 shows proposed

model has low value loss compared to the base model.
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m Proposed Model
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Fig. 9. Value loss.
Extrinsic rewards are the feedback which receives the agent from the environment. It shows how the
agent performs its actions according to the predefined policy. This feedback helps the agent to
maximize the reward received. Fig. 10 shows the proposed model performs well compared to the
base model, the proposed model achieves a maximum extrinsic reward of 0.031 and whereas the
base model achieves -0.27.

Extrinsic Reward

® Proposed Model

u Base Model

Time Steps
Fig. 10. Extrinsic Reward.

5. CONCLUSION
In Multi-Agent Systems (MAS), the role of agents is important. However, in many real-world
applications, agents have different architectures, sizes, and tasks. Past research has focused on the
cooperation of homogeneous agents and proposed various deep reinforcement learning techniques,
which are inapplicable to heterogeneous agents due to their variation in size, architecture, and other
factors. In this paper, we propose a novel approach using the PPO algorithm, along with visual and
vector observations, for the collaboration of heterogeneous agents. The learning environment is
created in Unity 3D. The results indicate that the proposed model outperforms the base model in
terms of mean reward, extrinsic reward, and episode length. In terms of policy loss, both models
perform similarly.
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