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WSNs are often deployed in harsh and challenging environments where nodes 
may have limited energy and be prone to failure, reliability is an essential 
component of these networks. Cluster reliability is one of the approaches that 
can lead WSNs to reliable communication and energy efficiency at the highest 
degree of order. Cluster reliability is defined as the ability of a cluster to retain 
its structure and functionality over time, especially in the event of node 
failures or other unfavourable circumstances. The majority of current 
clustering protocol-based research focuses on (i) cluster Head Role (ii) cluster 
formation, (iii) data accuracy, and (iv TDMA schedule creation, all of which 
entirely ignore the importance of appropriate cluster head selections, which 
have a significant impact on WSN energy efficiency. The network has been 
divided into optimum clusters in this study employing a hierarchical 
clustering agglomerative approach after the optimal  number of clusters has 
been established and confirmed by beta CV cluster validity Indexing. Each 
node's value is determined by the fitness function proposed in this study using 
parameters such as (i) residual energy, (ii) distance from sink, (iii) SNR (signal 
to noise ratio), and (iv) average distance. The weight parameter is determined 
using the entropy-weighted technique. It has been noted that our suggested 
method, which is shown in Figure 5, has 20% and 10% longer network 
lifetimes in comparison to the LEACH and LEACH-FC protocols. Finally, the 
obtained results have been validated by the testing of statistical hypotheses.  
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1. Introduction 
 
Wireless Sensor Networks (WSNs) have emerged as a vital research area in wireless communication 
and sensing, comprising small, low-cost sensor nodes equipped with sensing, processing, and 
communication capabilities, enabling real-time monitoring, data collection, and control across 
diverse applications such as environmental monitoring [1], healthcare [2], smart cities [3], and 
industrial automation [4]. These networks bridge the physical and digital worlds by transmitting data 
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wirelessly to central nodes for analysis [5], with each sensor node limited by residual energy, 
necessitating optimal energy use. Clustering techniques like LEACH [6], HEED [7], EECS [8], PEGASIS 
[9], and TEEN [10] enhance energy efficiency and network longevity by optimizing resource 
utilization, though cluster reliability—critical for robust communication, fault tolerance, load 
balancing, and resilience—often remains unaddressed. To address this, a fitness function weighted 
by entropy [11] evaluates node importance within clusters, while Katz centrality integrates with this 
function to assess cluster reliability, with the proposed approach's energy efficiency compared 
against existing protocols. 
 
2. Related Work  

In the study of Kabashkin [12] proposes a method to extend WSN lifetime by using redundant 
batteries in cluster-based systems. A Markov model analyzes sensor node reliability, evaluating 
failure modes and optimizing energy preservation for prolonged autonomy. The main focus of Park 
et al. [13] is reliable sink-to-sensors data delivery in wireless sensor networks, identifying unique 
challenges and proposing a scalable framework. The solution leverages WSN characteristics for 
efficient reliability, validated via ns2 simulations. The research of Chen et al. [14] explores Reliability 
Improved Cooperative Communication (RICC), a novel data collection technique, in order to improve 
the reliability of cooperative communications based on random network coding in multi-hop relay 
WSNs. The recommended technique has improved reliability without compromising the network's 
total lifespan. Bogatyrev et al.[15] focus Cluster systems to enhance reliability and fault tolerance by 
consolidating resources, using duplicated nodes for load balancing or redundant calculations. Studies 
focus on improving cluster readiness for real-time requests, ensuring stable service traffic. 
Mismatched results trigger recalculations, optimizing performance and fault recovery. The research 
of Jin et al. [16] proposes a novel way to measure the dependability of WSN nodes through the 
utilization of both temporal and spatial correlation of the collected data. A disturbance analysis 
method that simulates disturbances experienced during node operation is used to create a data 
reliability evaluation model for WSN nodes. The model includes the evidence reasoning (ER) rule in 
an unpredictably changing environment. The model's effectiveness has been tested using wireless 
sensors at the Intel Berkeley research facility.  The inclusion of disturbance analysis in the ER rule 
provides a practical technique to evaluate the reliability of WSN data.  The goal of Zou et al. [17] study 
is to addresses distributed fault-tolerant consensus tracking for heterogeneous, switched nonlinear 
multi agent systems with unknown dynamics and topology. A novel protocol using fuzzy logic systems 
and Lyapunov methods ensures consensus despite actuator faults and arbitrary switching, validated 
by numerical simulations. The research of Rathee [18] offers an IoT-based artificial neural network 
for secure big data processing in multihoming networks using Bayesian Rule (BR) and Levenberg-
Marquardt (LM) algorithms. It evaluates AI-assisted mechanisms through metrics like classification 
accuracy, time, sensitivity, specificity, ROC, and F-measure. The study addresses gaps in automated 
security and efficiency for multihoming big data processing, integrating IoT and AI for enhanced 
performance. In the area of complex social networks, Xu et al. [19] explores the challenges tied to 
ensuring dependability in mobile wireless sensor networks (MWSNs). The study focuses on key 
hurdles such as large-scale implementation, streamlined data processing, and delay tolerance in 
MWSNs. To tackle these challenges, researchers have introduced swarm intelligence-based bio-
inspired optimization algorithms and advanced machine learning techniques. The paper also delves 
into various aspects of network reliability, including methods for evaluating topological robustness 
in industrial settings and predictive approaches for identifying potential failures in MWSNs. 

. 
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3. Methodology 
3.1 Basic concepts of fuzzy sets 
In classical (crisp) set theory, an element either fully belongs or does not belong to a set. However, 
in fuzzy set theory, introduced by Lotfi Zadeh [20], elements can have partial membership in a set. 
This allows for representing uncertainty and vagueness in real-world scenarios where boundaries are 
not sharply defined. 

A fuzzy set A  in a universe of discourse is X  defined as:  ( , ( ) |AA x x X=  .   

Where  ( )A x is a of A ,and ( ) [0,1]A x  degree of membership x  of in A  .  

   

A fuzzy number ( , , )A a b c= , where a b c  is called triangular fuzzy number (TFN) whose 
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3.2 Entropy Weighted Method 
 
The concept of entropy was initially presented by the German scientist R. Clausius in 1865 [21, 22]. 
It indicates the disorder or insanity of a thermodynamic process and is a phase characteristic of 
matter. Shannon entropy measures the uncertainty or information content in a probability 
distribution. We have use Shannon entropy in this research to express uncertainty 

Assume that ( )ij m n
X x


=  be the decision matrix and 1 2( , ,..., )ns s s s= , where 0 1js  and 1js =

be the weight vector with regard to the m alternatives ( 1,2,..., )iA i m=  and n  criterion
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3.3 Signal-to-Noise Ratio (SNR) 
 
SNR is a fundamental concept in communication systems and signal processing [23–26]. It calculates 
the strength of a desired signal relative to the background noise of the system. SNR is commonly used 
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to assess the accuracy and dependability of a signal transmission. SNR calculates the ratio between 
the strength of the unwanted noise and the beneficial signal. A greater signal-to-noise ratio (SNR) 
indicates a stronger, more reliable signal, whereas a lower SNR suggests a weaker, more susceptible 
to interference and distortion signal. SNR, which is often stated in decibels (dB), is calculated by 
dividing the signal power by the noise power. The following is the formula for SNR in dB: 

 10_ 10 log
signal

noise

P
SNR dB

P

 
=   

 
                                                                                                                      (1) 

Where signalP  represents the power of the signal and noiseP represents the power of the noise. 

A higher SNR indicates better signal clarity, while a low SNR means more noise interference.  
 
4. Symbols and notations 
We have taken into account a WSN here under the following assertions: 

• Every node in a square is dispersed equally and at random. 

• Communication with the nodes that might be impacted by multi-path attenuation is made 

possible by the base station's positioning beyond the square's borders. 

• Multi-path attenuation has no effect on node-to-node communication. 

• The nodes are cohesive since they have the same capabilities and starting battery energy, but 

they also carry out distinct tasks at particular times. 

• Each node in the network has the ability to communicate not only with the base station (BS) 

but also with any other node. 

• The nodes remain static throughout the operation, which implies they are stationary and do 

not move. 

• Each node perceives its environment and emits a signal of equal duration. 

• The primary source of the unpredictability and fuzziness of the initial energy supply of nodes, 

the distance between sensor nodes and base stations, the size of the message, voltage 

metrics, transmission energy, and other aspects connected to sensor nodes is the hazardous 

and unpredictable natural environment. Table 1 lists the symbols used in this paper. 

 

 

 Table 1: list of symbols 

Symbol Description 

d  The base station's range 
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0d  The predetermined distance to the base station for measurement 

( , )hx hyCL CL  Co-ordinate of cluster head in a WSNs 

( , )x yX X   Cluster head location in a WSNs base station 

engIN  Basic energy 

engEE  Electronics energy 

DTEE  Utilization of energy during transmission of information 

fs  Enhancement of energy to eradicate open space 

mp  Acceleration of energy to traverse the multi-path 

DREE  Energy usage during data receiving 

clOP  The ideal number of cluster heads 

DataL  Data length 

NNode  number of nodes overall in the network 

KN  Node count in a cluster 

M  Extend cover 

 
5. System Model definition and formulation 
 
The system infrastructure consists of a large number of sensor nodes and a single BS. All sensor nodes 
fall into one of two categories: CHs or common nodes. Common nodes are responsible for monitoring 
environmental data and transmitting the sensed data to the CHs. In order to function as the CH node, 
the common nodes are carefully selected. The data that the CHs get from the common nodes is 
compiled and sent to the BS. 
A first-degree radio model serves as the foundation for the network's energy model. The only factor 
considered is the energy consumption during communication. The energy spent for data gathering, 
aggregation, and transmission is included in the total energy used. When a common node and a 

cluster head node exchange data of a certain size DataL , the energy consumption can be determined 

using Equation 2. 

( , ) * *DT Data eng Data mp DataEE L d EE L L = +                                                                                             (2)

( ) *DR Data eng DataL EE LEE =                                                                                                                            (3) 

The energy used to transmit an DataL -bit of data is designated as ( , )DT DataEE L d , and the energy 

used to receive that data is designated as ( )DR DataLEE . The energy consumption of the amplifier 

during the transmission phase can be calculated using Equation 2, where mp is the amplifier's energy 

utilization during the transmitting phase. 

  

2
0

4
0

if

if
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mp

mp

d d d

d d d

   


   

 
= 



                                                                                                                        (4) 

The sensor node will employ the open-space propagation model if the distance value d  is below a 

predetermined threshold value 0d  or equal to it. Conversely, in scenarios where the system 
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employs a multipath fading channel, Equation 5 can be employed to ascertain the 0d  value  by 

taking into account the communication energy parameters fs and mp . 

0
fs

mp

d



 =                                                                                                                                                       (5) 

It's crucial to precisely count the network's cluster heads in order to increase WSN lifetime and energy 
efficiency. As a result of our research, we have determined the ideal cluster size, clOP [27], which is 

important for fulfilling the mentioned goals. Equation 6 uses to determine the optimal number of 
CHs which is given below: 

4( )

fs N
cl

mp toBS eng

Node
OP M

d EE



  
=

−
                                                                                                                 (6) 

Here, M  and NNode  are denoted as the extent covered and quantity of nodes within the system. 

 
6. Experimental Setup and Result 
 
Clustering is one of the major issues when it concern with enhancing the lifetime of WSNs. In order 
to perform optimal clustering Hierarchical clustering has been applied in this research. The entire 
network has been divided into number of cluster based on the values of clOP . CHs selection in 

another issue which effects the WSNs life time. To find the CHs of each cluster we have implemented 
Algorithm 1 which takes residual energy, distance from the sink, SNR value and data accuracy into 

account. In our studies we have deployed 96 nodes over 2100X100m area depicted in Figure 1 where 

BS is located in (50,170) coordinate. The nodes are deployed randomly over the specific area. 

 
                         Figure 1: Distribution of 96 nodes over 2100X100m network. 

 
The total packet size is 77.5 bytes, with 22.5 bytes for the headers and 50 bytes for the core message. 
The channel's bandwidth is set to 1 Mb/s. BS refers to a node with increased computing power and 
no energy constraints. It has been discovered that unreliable or erratic connectivity may increase 
transmission noise and affect the batteries in sensor node nodes. Batteries directly affect residual 
energy, which reduces the network's longevity. Additionally, noisy data are a concern and require for 
greater careens. For replacement, the distance between the sensors, logic, and actuators is essential. 
As a result, we considered the following fuzzy parameters shown in Table 2. 
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                   Table 2: Simulation parameter with Defuzzified values 
 

Parameters Assumed Parametric 
Value 

Defuzzified Value 

NNode  96# 96 

engIN  (0.7, 0.9, 1.1) J/bit/m2 0.9 J/bit/m2 

Coordinate of BS (50,170)# (50,170) 
Size of the data 
packet 

(495,500,510) byte 501.25 byte 

Hello/broadcast/CH 
join message 

(20,22.5,25) byte 22.5 bytes 

fs  (8,10,12) J/bit/m2 10 J/bit/m2 

mp  (0.002,0.0023,0.0025) 
J/bit/m2 

0.00227 J/bit/m2 

engEE  (47,50,51) J/bit/m2 49.33 J/bit/m2 

clOP  9# 9 
#Not considered as fuzzy valued. 

 
To create cluster with optimize number of clusters we have use hierarchical clustering agglomerative 
approach [28-29]. Agglomerative clustering is a hierarchical clustering method that starts by treating 
each data point as an individual cluster. It then iteratively merges the closest pairs of clusters based 
on a chosen distance metric and linkage criterion like single, complete, or average linkage. The 
process continues until all data points are merged into a single cluster or until a stopping condition 
is met. The result is a dendrogram, a tree-like structure that visually represents the sequence of 
merges and the distances at which they occurred. This approach allows for flexibility in choosing the 
number of clusters by cutting the dendrogram at a desired level. Agglomerative clustering is useful 
for exploring nested groupings in data but can be computationally expensive for large datasets due 
to its O(n³) time complexity. Figure 2 shows the distribution of 96 data points into clOP number of 

cluster using hierarchical clustering. 
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 Figure 2: Using a hierarchical clustering technique 96 nodes has been clustered into 9 clusters 

 
A dendrogram [30] is built to graphically represent the hierarchical structure of the clusters during 
the merging or splitting of clusters in hierarchical clustering. To understand the order of merges or 
splits about the clustering structure dendrogram is very helpful. Figure 3 shows the dendogram of 
the clusters depicted in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Dendogram of 96 nodes which has been used to create clusters using hierarchical  
                       clustering 

 
The  Beta Conditional Variance index [Beta CV] [31] is a cluster validity measure used to evaluate the 
quality of clustering results by assessing the compactness and separation of clusters. It compares the 
intra-cluster variance is how closely points are packed within a cluster to the inter-cluster variance is 
how well-separated different clusters are. The beta CV can be formulated as: 
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Inter ClusterVariance

d x y
N N =   
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−



 
                                                    (7) 

 
Where is a ( , )d x y  distance metric. 

In order to perform our experiment we have calculated the range of optimal cluster clOP using (6) 

and verified by equation 7. Here Node =96N nodes, M =100m , 10 pJfs = and mp =0.00227 pJ . 

Here the calculated range of optimal cluster is in between 6 to 10. i.e., 6< < 10clOP .  In our 

experiment we have choose the values of clOP as 9. To prove the value of clOP  we have taken all the 

96 nodes and validate the value using Beta CV value by using equation 7. Figure 4 demonstrate the 
scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       Figure 4: Maximum value of Beta CV index shows in cluster 9 
In this study we have assumed the nodes in the network are not only connected to the BS also are 
also connected to each other via intermediate nodes. After clustering is being performed by the 
hierarchical clustering, nodes of same clusters will only be communicates to each other. Nodes of 
other clusters will terminate their connection. Once the CHs have been chosen the nodes may send 
the data to CHs directly or by the intermediate nodes which has been determined by shortest path 
algorithm. In this study we have calculate the path from source to CHs by using Floyd-Warshall 
algorithm [32-33]. The energy consumption in both scenarios has been compared before transmitting 
data either directly or through intermediate nodes [34-35]. The solution has been selected from the 
one with lower energy consumption. In order to choose the right CHs we have introduce a fitness 

function which takes parameters residual energy ( 1 ), distance from the Original Station ( 2 ), SNR 

Value ( 3 ) and average distance ( 4 ) into its account. The weight of each parameter has been 

calculated by entropy method which is shown in Table 3. 
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 Table 3: Entropy weighted value of each parameter  

Properties 1  2  3  4  

Weight 0.1180 0.1182 0.3660 0.3378 

 
Once the weight has been calculated by using entropy method equation 7 can be used to find the 
fitness values of each node. Nodes with highest fitness values with respect to each cluster have been 
selected as CHs by using equation 8. 

  
β

2F ( ,β , , ) = (residualenergy)+ + (SNR)+ ( tan )
1 2 3 4 1 3 4(dist from station)

i
Avg Dis ce

fitness
          (7)                    

Table 4 shows the CHs with all their parameter values and Table 5 contains the CHs with respect to 
their fitness values. 
 
Table 4: 9 cluster head with respect to their all parameter values 

Cluster Head Distance from 
Base Station 

SNR 
Value(dB) 

Average 
Distance  

Residual Energy 

CH1 75.120 17 2.87 0.8733 
CH2 89.381 16 1.91 0.8685 
CH3 68.712 12 3.96 0.8712 
CH4 65.008 15 1.89 0.8622 
CH5 90.249 13 2.73 0.8739 
CH6 66.658 11 4.90 0.8545 
CH7 92.802 12 3.91 0.8648 
CH8 45.688 11 4.24 0.8719 
CH9 43.880 16 2.96 0.8650 

 
Table 5: Cluster Head with their Fitness values 

Cluster 
Head 

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 

Fitness 
Values 

0.4978 0.4966 0.4967 0.4950 0.4952 0.4956 0.4948 0.4942 0.4933 

 
Node selection criteria 
Using a hierarchical clustering agglomerative approach, all nodes must be part of the cluster in order 
to choose the right CHs. Equation 7 was used to choose CHs, and algorithm 1 was used to select the 
CHs for the next round. The algorithm was written in Python for the purpose of creating clusters, and 
it was run on Linux using a Python Jupiter notebook (Version: 3). In the first simulation round, all 
nodes sent their data to BS, which was implemented by Network Simulator 2 (NS2) to determine the 
values of all parameters. We have now implemented our proposed algorithm (Lifetime Extension 
algorithm) to extend the life time of WSNs given below. 
Lifetime extension algorithm: 

Step 1: 96 number of nodes has been positioned randomly over 2(100,100)m  area with BS (50,170)

coordinates. 
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Step 2: The CHs chosen by Cluster Head selection algorithm will forward the information to the BS 
for the second and following rounds. 
Step 3: Continue steps 4 through 10 until none of the nodes' remaining energy is being reduced. 
Step 4: The counter is raised when the node's value surpasses that of every other node in the cluster 
based on a comparison of each node's residual energy to the other nodes. 
Step 5: The counter is raised when the node's value surpasses that of every other node in the cluster 
when comparing each node's distance from the BS to the other nodes. 
Step 6: A counter is raised when the SNR value of a node surpasses that of every other node in the 
cluster after comparing each node's value to those of the other nodes. 
Step 7: Each node's data accuracy value is compared to all other nodes in the cluster, and when a 
node's value is higher than all other nodes', the counter is raised. 
Step 8: The CHs for the following round are the nodes with the highest counter values. 
Step 9: If a cluster has fewer than three nodes, nodes will be added to the closest cluster based on 
each cluster's reliability. 
Step 10: Jump to next round. 
Step 11: Stop. 
C++ was used to code the WSNs lifespan extension algorithm, and Python was used to implement 
the outcome. The remaining energy of every node has been found to decrease after 2132 rounds. An 
illustration of the scenario is shown in Figure 5. 
 

 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
            Figure 5: Number of Rounds vs. Number of Nodes alive  
 
LEACH-FC (LEACH-Fuzzy Clustering) [36] and LEACH are two key protocols in Wireless Sensor 
Networks (WSNs) designed to enhance energy efficiency and extend network lifetime. 
While LEACH serves as the foundational protocol using probabilistic cluster head selection, LEACH-
FC introduces significant improvements by integrating fixed cluster heads and fuzzy logic-based 
decision-making The main improvements in Leach-C include (a) Fixed Cluster-heads (b) Fuzzy Logic-
based Cluster Head Selection (c) Reduced Energy Consumption (d) Increased Data Transmission 
Efficiency. In this study it has been found that our proposed approach shows greater network lifetime 
as compare with LEACH and LEACH-FC protocol. Our proposed approached shows 21% and 10% more 
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network lifetime with respect to LEACH and LEACH-FC protocol which has been demonstrated in 
Figure 5. 
 
 

 
 
                  Figure 5: Number of Rounds vs. Number of Nodes alive  

Therefore, the overall time complexity of the algorithm is approximately 2
1( )clOP K  + ) or 

simplified as 2( )clOP K . 

We conducted a statistical hypothesis test using the following hypotheses in order to validate the 
results:  
Null Hypothesis ( oH ): The average number of simulation runs falls between 1990 and 2230, which 

is the 95% confidence interval. 
Alternate Hypothesis ( 1H ): The number of simulation iterations Lies outside the 95% Confidence 

Interval. 
We set the significance level at 1 0.05 = , and 𝑇 represents a random variable following the 𝑡-

distribution. The 95% confidence interval is [1990, 2230]. The simulation was repeated 50 times, and 
the average result obtained was 2130. Using statistical calculations, we have determined 𝑇−𝑆𝑐𝑜𝑟𝑒 is 
0.4219 and 𝑝 (the probability of 𝑇 being greater than 0.4219) is 0.7968. 
Since 1( 0.05)p  = , we do not have sufficient evidence to reject the null hypothesis ( oH ).Hence, it 

can be deduced that the average number of simulation iterations lies within the 95% confidence 
interval. 
 
4. Conclusions 
 

In this research, the studies on the selection of entropy weight CHs on WSNs that concentrate on 
cluster formation with appropriate CHs have produced encouraging findings. The fitness function, 
which takes into account factors like (i) residual energy, (ii) distance from the sink, (iii) SNR, and (iv) 
average distance, has established the importance of particular nodes within the network. The weight 
of each parameter that constitutes the fitness function is determined by applying the entropy-
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weighted technique. This novel approach makes it possible to choose a dependable cluster while 
preserving the network's stability, efficient data transfer, and energy efficiency. The results 
demonstrate that this strategy greatly increases the network's lifespan, providing a noteworthy 20% 
and 10% increase over conventional LEACH and contemporary LEACH-FC methods, as illustrated in 
Figure 5. This methodology can be used to real-world situations because it is also designed to be 
easily understood. The node location was considered to be two dimensions in this study [37], 
however it is actually multidimensional and not covered in this work. Only few factors have been 
considered in the selection of CHs, ignoring several others that might affect the network's lifetime. 
When there is an obstruction between two nodes, the lifespan extension algorithm that selects the 
distance from the sink as a crucial parameter will not function correctly. It is necessary to implement 
a new algorithm that takes into account the obstruction between the two nodes. In order to increase 
the network's lifetime, the proposed method may be used in subsequent studies to discover CHs 
utilizing multi-criteria decision making. The algorithm that was suggested in this study could be the 
subject of future research because of its very high level of complexity. In this proposed research only 
free path propagation model has been chosen someone can use other model for propagation. 
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