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Epidemic models classify the process of infectious disease into a series of 
discrete stages, with transition from susceptible to different states. In this 
paper, a non-linear epidemic model is proposed to control and understand the 
dynamics of hepatitis B disease. Epidemic model describes a set of equations 
where computational tools are used to study the spread of transmissible 
pathogens in host populations. This model considers the effect of vaccination 
during the formulation of proposed model. In the work, the numerical 
solution of the model is further attained through Homotopy Analysis Method, 
which provides an effective and flexible way for controlling and adjusting the 
convergence region of the infinite series solution by means of an auxiliary 
parameter. The outcomes of this paper display that the hepatitis B disease has 
the inclination over a period of time but it is under control after vaccination. 
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1. Introduction 
 

In ecology, the sizes of plant and animal populations are generally affected and constrained by 
foraging, predatism, competition, and inadequate resources [1-4]. In 1979, Anderson and May [5] 
studied the effects of diseases in laboratory, household and undomesticated populations such as 
parasites, butterflies, birds, vertebrates, etc. In reality, transmissible diseases have impacted the sizes 
of human population and chronological past events [6,7]. The parasitic diseases such as babesiosis, 
filariasis, myiasis, sleeping sickness and so many others concerning viruses, bacteria, arthropods, and 
protozoans combined with low nutritional diet are the major reasons for discrepancies in the age-
dependent existence possibilities in the whole world [8-10]. Consequently, it is important to 
investigate the epidemic models for understanding the transmission dynamics of infectious diseases 
with different demographic structures.  

Mathematical modelling (MM) is one of the significant branches of mathematical area, which 
helps us to understand real-life problems and formulate them to the mathematical models and 
interpret the solutions to the real world [11-14]. MM in biology is the application of mathematical 
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models to problems arising in biology and life sciences, which acquires a knowledge both in 
mathematics and biology [15]. Over the past one hundred years, mathematics has been used to 
understand and forecast the transmission dynamics of diseases related to public health problems 
[16]. Many epidemiological models [17-20] have been developed in order to study the spread of 
infectious diseases in constant or variable size populations. These models with constant size 
population are easier to investigate than the variable size population models and has been more 
practical for human diseases. The assumption for a fixed size population with births are 
approximately balanced by the natural deaths (Patwa and Wahl [21]) and a constant size population 
in which disease rarely causes deaths is reasonable in an endemic modelling (Naik et al. [18]), but if 
there are significant number of disease related deaths which can affect the population size, then it is 
not reasonable to consider the constant population size. 

Hepatitis B virus (HBV) infection is a major public health problem, caused by the Hepadena virus 
with DNA genome which infects the liver of hominoidea including human [22-25]. This virus is 
transmitted through contact with blood and other bodily fluids, which could lead to develop viral 
persistence in the individual in the absence of strong antibody or some immune depression. It can 
cause a variety of symptoms such as scarring of the liver, liver cancer, gastrointestinal upset and 
malaise. Transmission of HBV infection are the same as those for the human immunodeficiency virus 
(HIV), but the hepatitis B virus is 50 to 100 times more transmittable than HIV. In HBV infection, the 
incubation period of virus is 90 days on average but can vary from about 30 to 180 days. From outside 
the body, the hepatitis B virus can live for at least seven days and it still causes infection at that time 
(Nelson et al. [26]). The occurrence of HBV infection differs from country to country and depends 
upon a complex mix of behavioral, environmental and host factors (Villa and Navas [27]).   

In this paper, we propose a deterministic model of the form susceptible-exposed-infectious-
vaccinated-recovered (SEIVR) type for Hepatitis of type B and find out the numerical solution using 
Homotopy Analysis Method (HAM). Infectious diseases have an exposed period after transmission of 
infection from susceptible to probably actual infective and then these infectives can transmit 
infection. If the exposure period is very short, then the potential infection can be ignored in the 
model, while in case of relatively long exposure period, the exposed compartment should be included 
in the model. In case of vaccination before the occurrence of an epidemic, the exposed period and 
period of treatment should be considered [8-10].  

The HAM was firstly proposed by Liao [28,29], which is an analytical approach to acquire the 
series solutions of several linear and non-linear ordinary/partial differential equations. It is based on 
the basic homotopy topology theory, which is a fundamental part of topology and differential 
geometry. This approach provides a freedom to choose initial approximations and auxiliary linear 
operators, which often helps to transfer the complex non-linear problem into its simpler form. Rani 
et al. [8] applied the HAM for solving deterministic mathematical model for HIV/AIDS disease by 
considering the stable and unstable stages of the disease. Bakare et al. [30] provided the solution of 
interval-based uncertain susceptible-infectious-recovered (SIR) epidemic model. With the use of 
HAM, Naik et al. [18] studied the stability analysis and obtained the numerical solution of SIR 
epidemic model with Crowley-Martin type functional response and Holling type-II treatment rate. In 
a study, Pareek et al. [31] used the HAM for solving fractional deterministic Lotka-Volterra model and 
investigates the convergence region of infinite solution. In a study, Geethamalini et al. [32] proposed 
a set of differential equations for the study of epidemic and further used the HAM for solving the 
developed epidemic model. As per the authors’ information, no one has proposed a deterministic 
SEIVR model for hepatitis of type B disease with an analytical solution using HAM. 

The main contributions of this work are listed as follows: 
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▪ A deterministic mathematical model is proposed of the form SEIVR for the hepatitis of 
type B, which depends on various parameters. 

▪ To attain the analytical solution of SEIVR model, the HAM is applied and the numerical 
results are presented for different particular cases. 

The rest part of this paper is organized as follows: Section 2 proposes a deterministic SEIVR model 
for hepatitis of type B. The proposed model analyses the effect of different parameters during 
epidemic period. Section 3 finds the analytical solution of proposed SEIVR model by means of HAM. 
Further, Section 4 presents the numerical results with respect to different sizes of population and 
analyses the convergence region of infinite series solution. Lastly, Section 5 concludes the whole work 
and recommends for further studies. 
 
2. Proposed Model 
 

The non-linear ordinary differential equations for the SEIVR model are presented as follows: 

( ) ( ) ( ) ( ) ( ),
d S

S t I t N t m S t S t
dt

  =− + − −                                                                                                   (1a) 

( ) ( ) ( (1 ) ) ( ),
d E

S t I t k E t
dt

   = − + + −                                                                                                        (1b) 

( ) ( ) (1 ) ( ) ( ) ( ),
d I

V t I t k E t I t
dt

    = + − − +                                                                                        (1c) 

( ) ( ) ( ) ( ) ( ) ( ) ,
d V

V t I t E t m S t V t V t
dt

    = − + + − −                                                                        (1d) 

( ) ( ) ( ),v

d R
f I t f V t R t

dt
  = + −                                                                                                                        (1e) 

(1 ) ( ) (1 ) ( ) ( ) ( ).v

d N
f I t f V t N t N t

dt
   = − − − − + −                                                                                 (1f) 

with initial conditions 0(0) ,S S=  0(0) ,E E=  0(0) ,I I=  0(0) ,V V=  0(0)R R=  and 0(0) .N N=                                                                      

In this model, ( ),S t ( ),E t ( ),I t )(tV  and )(tR  denote the numbers of susceptible, exposed, 

infected, vaccinated and recovered individuals as a function of time t, respectively and )(tN  
represents the total population size in time t . In this work, we assume that all the parameters are 
constant. 

 
The parameters used in this model are given as follows: 
 

  Transmission rate 

  Birth rate 
  Mortality rate 
k  Leaving rate of the exposed class 
  Removal rate from vaccinated class 
  Recovery rate 
m  Susceptible individuals selected for vaccination per unit time 
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  Individuals in the exposed compartment selected for vaccination per unit time 
  Fraction of vaccinated members who became infected 

vf  Fraction of V  members leave the vaccinated class at the time t 

f  Fraction of I members leave the infected class at time t  and enter into the recovery 

class 
(1 )f−  Remaining fraction dies due to the HBV infection 

     
3. Solution of the Proposed Deterministic Model by HAM 
 

To solve equation (1) by HAM, we choose the initial approximation 

0 0 0 0 0 0(0) , (0) , (0) , (0) , (0) , (0)S S E E I I V V R R N N= = = = = =  and the linear operators are 

1
1

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                                     (2a) 

2
2

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                                     (2b) 

3
3

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                               (2c) 

4
4

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                              (2d) 

5
5

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                              (2e) 

6
6

( ; )
[ ( ; )] ,

d t q
L t q

dt


 =                                                                                                                                               (2f) 

with the property that ,0][ =icL where ( 1,2,3,4,5,6)ic i=  is the integral constant and ‘q’ is the 

embedding (or homotopy) parameter. Next, from Eqs (1a)-(1f), we define the equations of nonlinear 
operator and given as 

1
1 1 2 3 4 5 6 1 3 6 1 1

( ; )
[ , , , , , ] ( ; ) ( ; ) ( ; ) ( ; ) ( ; ),

d t q
N t q t q t q m t q t q

dt


          = + − + +              (3a) 

2
2 1 2 3 4 5 6 1 3 2

( ; )
[ , , , , , ] ( ; ) ( ; ) ( (1 ) ) ( ; ) ,

d t q
N t q t q k t q

dt


           = − + + + −                 (3b) 

3
3 1 2 3 4 5 6 4 3 2 3

( ; )
[ , , , , , ] ( ; ) ( ; ) (1 ) ( ; ) ( ) ( ; ) ,

d t q
N t q t q k t q t q

dt


             = − − − + +         (3c) 

4 1 2 3 4 5 6[ , , , , , ]N       =  

4
4 3 2 1 4 4

( ; )
( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ,

d t q
t q t q t q m t q t q t q

dt


      + − − + +                                      (3d) 

5
5 1 2 3 4 5 6 3 4 5

( ; )
[ , , , , , ] ( ; ) ( ; ) ( ; ) ,v

d t q
N f t q f t q t q

dt


          = − − +                                           (3e) 

6
6 1 2 3 4 5 6 3 4 6 6

( ; )
[ , , , , , ] (1 ) ( ; ) (1 ) ( ; ) ( ; ) ( ; ).v

d t q
N f t q f t q t q t q

dt


         = + − + − − +    (3f) 
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Now, we construct the zeroth-order deformation equations as follows: 

1 0 1 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],q L t q S t q N t q t q t q t q t q t q      − − =                 (4a) 

2 0 2 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],q L t q E t q N t q t q t q t q t q t q      − − =                      (4b) 

3 0 3 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],q L t q I t q N t q t q t q t q t q t q      − − =                            (4c) 

4 0 4 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],q L t q V t q N t q t q t q t q t q t q      − − =                            (4d) 

5 0 5 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],q L t q R t q N t q t q t q t q t q t q      − − =                           (4e) 

6 0 6 1 2 3 4 5 6(1 ) [ ( ; ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )].q L t q N t q N t q t q t q t q t q t q      − − =                           (4f) 

Obviously, when 0=q  and 1,q=  we have  

1 0( ;0) ( )t S t =  and 1( ;1) ( ),t S t =                                                                                                                            (5a) 

2 0( ;0) ( )t E t =  and 2 ( ;1) ( ),t E t =                                                                                                                           (5b) 

3 0( ;0) ( )t I t =  and 3( ;1) ( ),t I t =                                                                                                                              (5c) 

4 0( ;0) ( )t V t =  and 4 ( ;1) ( ),t V t =                                                                                                                            (5d) 

5 0( ;0) ( )t R t =  and 5 ( ;1) ( ),t R t =                                                                                                                            (5e) 

6 0( ;0) ( )t N t =  and 6 ( ;1) ( ).t N t =                                                                                                                         (5f) 

Therefore, as the embedding parameter q  increases from zero to unity, 

( ; ): 1, 2, 3,4,5,6i t q i =  varies from the initial guess 0 ( ),S t 0 ( ),E t 0 ( ),I t 0 ( ),V t 0 ( ),R t 0 ( )N t
 to the 

exact solution ( ),S t ( ),E t ( ),I t ( ),V t ( ),R t ( ),N t  correspondingly. Next, expand the function

( ; ): 1, 2, 3,4,5,6i t q i =  using Taylor’s series with respect to ,q  we have  

1 0

1

( ; ) ( ) ( ) ,m

m

m

t q S t S t q


=

= +  2 0

1

( ; ) ( ) ( ) ,m

m

m

t q E t E t q


=

= +  3 0

1

( ; ) ( ) ( ) ,m

m

m

t q I t I t q


=

= +  

4 0

1

( ; ) ( ) ( ) ,m

m

m

t q V t V t q


=

= +  5 0

1

( ; ) ( ) ( ) ,m

m

m

t q R t R t q


=

= +  6 0

1

( ; ) ( ) ( ) ,m

m

m

t q N t N t q


=

= +  where   

1( ; )1
( ) at 0,

!

m

m m

d t q
S t q

m dq


= =    2 ( ; )1

( ) at 0,
!

m

m m

d t q
E t q

m dq


= =  3( ; )1

( ) at 0,
!

m

m m

d t q
I t q

m dq


= =  

4 ( ; )1
( ) at 0,

!

m

m m

d t q
V t q

m dq


= =  5( ; )1

( ) at 0
!

m

m m

d t q
R t q

m dq


= =  and 6 ( ; )1

( ) at 0.
!

m

m m

d t q
N t q

m dq


= =  

If the initial approximation, the auxiliary parameter   and auxiliary linear operators are 

appropriately selected, then the aforesaid series is convergent at 1=q , so that 
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0

1

( ) ( ) ( ),m

m

S t S t S t


=

= + 0

1

( ) ( ) ( ),m

m

E t E t E t


=

= +  0

1

( ) ( ) ( ),m

m

I t I t I t


=

= +  
0

1

( ) ( ) ( ),m

m

V t V t V t


=

= +  

0

1

( ) ( ) ( )m

m

R t R t R t


=

= +  and 
0

1

( ) ( ) ( ),m

m

N t N t N t


=

= +  which is one of the solutions of the original non-

linear equation. 

Now, we define the vectors 0 1( ) [ ( ), ( ),..., ( )],n nS t S t S t S t=  0 1( ) [ ( ), ( ),..., ( )],n nE t E t E t E t=  

0 1( ) [ ( ), ( ),..., ( )],n nI t I t I t I t=  0 1( ) [ ( ), ( ),..., ( )],n nV t V t V t V t=  0 1( ) [ ( ), ( ),..., ( )]n nR t R t R t R t=  and 

0 1( ) [ ( ), ( ),..., ( )].n nN t N t N t N t=  

Then the mth order deformation equations are 

1 1 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL S t S t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                     (6a) 

1 2 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL E t E t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                   (6b) 

1 3 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL I t I t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                    (6c) 

1 4 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL V t V t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                (6d) 

1 5 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL R t R t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                   (6e) 

1 6 1 1 1 1 1 1[ ( ) ( )] [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )],m m m m m m m m mL N t N t N S t q E t q I t q V t q R t q N t q − − − − − − −− =                (6f) 

wherein 
0, 1,

1, 1.
m

m

m



= 


  

Now, the solution of

 

thm order deformation Eqs (6a)-(6f) for 1m  becomes 

1 1 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] ,

t

m m m m m m m m mS t S t N S q E q I q V q R q N q d       − − − − − − −= +          (7a) 

1 2 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] ,

t

m m m m m m m m mE t E t N S q E q I q V q R q N q d       − − − − − − −= +         (7b) 

1 3 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] ,

t

m m m m m m m m mI t I t N S q E q I q V q R q N q d       − − − − − − −= +            (7c) 

1 4 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] ,

t

m m m m m m m m mV t V t N S q E q I q V q R q N q d       − − − − − − −= +          (7d) 

1 5 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] ,

t

m m m m m m m m mR t R t N S q E q I q V q R q N q d       − − − − − − −= +         (7e) 
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1 6 1 1 1 1 1 1

0

( ) ( ) [ ( ; ), ( ; ), ( ; ), ( ; ), ( ; ), ( ; )] .

t

m m m m m m m m mN t N t N S q E q I q V q R q N q d       − − − − − − −= +         (7f) 

Here, the associated homotopy series solution is presented as 
0

( ) ( ) ,k

k

S t S t


=

=  
0

( ) ( ) ,k

k

E t E t


=

=

0

( ) ( ) ,k

k

I t I t


=

=  
0

( ) ( ),k

k

V t V t


=

=  
0

( ) ( ),k

k

R t R t


=

=  
0

( ) ( ),k

k

N t N t


=

=  which is convergent for any value of 

  in the convergence region. Thus, the series solution to the second approximation is obtained and 

given as follows: 

2 2

0 0 0 0 0 0 0 0 0( ) [ ((2 ) ( )) ( ( 1 )S t S N m S S I S t m S k S E    = + + − + + + + + − +  

2 2 2

0 0 0 0 0 0 0 0 0 0S I S I N I I f I V N           + + − − + − +  

2 2 2

0 0 0 0 0 0 0 0 03 2 3 2S I N S N S I N S          + − + + + − +  

2
2

0 0 0 0 0 0 0 0( 2 2 ) ) ],
2

v

t
m N S I S S V I f V      + − + + − +                                                                        (8a) 

0 0 0 0 0( ) [ ((2 ) ( ( 1 ) ( ) ))E t E S I k E E t   = − + + − + − +  

2

0 0 0 0 0 0(( ) ( )k k S I k E E k E E      + + − + − + + − +  

2

0 0 0 0 0 0 0 0 0 0 0( ( 1 ) ( 2 ) )) ],
2

t
k S E I N m S S I S S S V      − − + + − + + + + −                                     (8b) 

0 0 0 0( ) [ ( (2 ) ( ( 1 ) ( )))I t I k E I V t    = + + − + + + −  

2

0 0 0 0( (1 ) ( (1 ) 2 ) ( (1 ))k E k E I kV        + − − − − − − + + −  

2
2

0 0 0 0 0 0 0(( ) (1 ) ( (2 3 ) ( )))) ],
2

t
I k S m S V V V I        + + + − + − + + + −                                  (8c) 

0 0 0 0 0 0 0( ) [ ((2 ) ( ))V t V m S E V V V I t   = − + + − − −  

2 2 2

0 0 0 0 0 0( ( ( 1 ) 2 ) ( ) ( ( 1 ) )m S E k V E kV I          + − + − + − − − + + + − + −  

2

0 0 0 0 0 0 0 0( ( 2 3 ( ))) ( ( 2 (1 )))) ],
2

t
I S V I V m N S I           + + + + + − − − + + + +               (8d) 

2 2

0 0 0 0 0 0( ) [ (2 ) ( ) ( (1 )vR t R f I R f V t f k E R     = − + − + + − +  

2

0 0 0 0 0 0 0 0( 2 ) ( 2 )) ],
2

v

t
f I V f m S E V V V I        − + − + + − − −                                               (8e) 
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0 0 0 0 0 0( ) [ ((2 ) (( 1 ) ))vN t N f I V N N f V t    = − + − + − + − +  

2

0 0 0((1 )( ( 1 ) ( ))f k E I V      + − − + + + −  

0 0 0 0 0 0( ( )) ( 1 ) ( (1 )vm S E V I f f I V        − − − + + + − + + − +  

2
2

0 0 0 0 0 0 0 0) ( 1 ) ) ].
2

v v

t
N N f V f I V N N f V          − + − + − + − + − +                                     (8f) 

      

4. Numerical Results 
 

The main aim of this work is to develop SEIVR model for the Hepatitis of type B and obtain the 
approximate analytical solution by HAM. Moreover, we investigate the impact of auxiliary parameter 
on the convergence of the series solution by means of − curve analysis. In the following, we take 
four cases with the different values of considered parameters and analyse the influence of 
convergence-control parameter .  For all the cases, we consider the initial approximation as 

0 0 0 0 0 050, 20, 10, 10, 10, 100.S E I V R N= = = = = =  

Case I: 

 
 

Figure 1. - curve for the HAM approximate solution for third term approximation of susceptible (S) populations over 

the parameter  

 
In this case, Figure 1 presents the region of convergence of the series solution for susceptible 

population with respect to  and various values of the parameters, which are 0.7,f =  0.6, =  

0.4, =  0.3, =  0.7,k =  0.2, =  0.8,vf =  0.4,m=  0.01, =  0.1 =  and 0.7. =  It presents the 

validity of region of convergence of the series solution for susceptible population at 1.75=−  to 1.3.  
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Figure 2. For Case-I, plot of susceptible (S), exposed (E), infected (I), vaccinated (V) and recovered (R) populations with 
respect to time t  

 

Figure 2 graphically represents the plot of populations (susceptible, exposed, infectious, 
vaccinated and recovered) over the time ‘t’ and different values of parameters 0.7,f = 0.6, =

0.4, = 0.3, = 0.7,k = 0.2, = 0.8,vf = 0.4,m= 0.01, = 0.1, = 0.7, = 0.6.=−  From Figure 2, it 

can be seen that initially the number of susceptible population is quickly decreasing with respect to 
time t ; afterwards  its nature changes rapidly. In a similar way, the exposed population is increasing 
initially over the time t ; afterwards it is decreasing with respect to time ‘t’. Moreover, the number 
of infectious, recovered and vaccinated group populations are slowly increasing as compared to 
exposed population with respect to time ‘t’. So, there is an epidemic in the population, which is 
physically justified. 

 
Case II: 

 
Figure 3. For Case-II, plot of susceptible (S), exposed (E), infected (I), vaccinated (V) and recovered (R) populations with 

respect to time t 

In this Case, we assume that the transmission rate   is less than the Case-I and the other 

parameters are similar as the previous case. From Figure 3, we can easily see that the number of 
susceptible populations is initially decreasing slowly than the first case with respect to time t  and 
after that, it behaves opposite. For the exposed population, initially the number of individuals is 
increasing slowly over the time t  and later, it is decreasing. Similarly, the numbers of vaccinated, 
infectious and recovered populations are increasing slowly as compared to expected population with 
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respect to time t  and different values of the parameters 0.7,f =  0.6, =  0.4, =  0.1, =  0.7,k =  

0.2, =  0.7, =  0.8,vf =  0.4,m =  0.01, =  0.1 =  and 0.6.=−  In this case, initially the infected 

population are increasing very slowly than the previous case, then there is no epidemic in the 
population. 

 
Case III: 

 
Figure 4. For Case-III, plot of susceptible (S), exposed (E), infected (I), vaccinated (V) and recovered (R) populations with 

respect to time t 

In this case, we assume that the mortality rate and the birth rate are equal and all other 
parameters are similar to the second case. Figure 4 shows that initially the number of susceptible 
populations is decreasing with respect to time t  and later, it behaves opposite. For the exposed 
populations, the number of individuals is increasing slowly over the time t  and further, it is 
decreasing with respect to time t. Next, the numbers of infected, vaccinated and recovered 
populations are increasing slowly with respect to time t and different values of the parameters 

0.7,f =  0.6, =  0.4, =  0.1, =  0.7,k =  0.2, =  0.8,vf =  0.4,m=  0.01, =  0.2, =  0.7 =  and 

0.6.=−  

 
Case IV: 

  

Figure 5. For Case-IV, plot of susceptible (S), exposed (E), infected (I), vaccinated (V) and recovered (R) populations with 
respect to time t 

In this case, we assume that the number of susceptible people who receives the vaccine is more 
than the previous cases and all other parameters are same as the second case. Figure 5 shows that 
the number of susceptible populations is decreasing initially with respect to time and later, it behaves 
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opposite. For the exposed population, the number of individuals is increasing slowly over the time 
and later, it is decreasing with respect to time. In a similar way, the numbers of infected and 
vaccinated populations are increasing slowly as compared to exposed population over the time t  but 
the recovered population is increasing rapidly with respect to time t  and different values of the 

parameters 0.7,f =  0.6, =  0.4, =  0.1, =  0.7,k =  0.2, =  0.8,vf =  0.6,m=  0.01, =  0.1, =

,1.0= 0.7 =  and 0.6.=−  Since the vaccination parameter for susceptible population is larger 

than the previous cases, therefore most of the people in the total population are susceptible and 
vaccinated. 
 
 
4. Conclusions 
 

This paper has developed a deterministic SEIVR model to study the epidemic of hepatitis B. 
Further, the homotopy analysis method has applied to acquire the solution of nonlinear equations of 
the proposed SEIVR model, depending on auxiliary/convergence-control parameter .  In this work, 
the  -curves are plotted to see the convergence region of the series solution of the problem. For the 

taken values of ,  the obtained solution is applicable for the various values of parameters. In future, 

we would extend this work by taking fuzzy parameters instead of exact numerical values. Moreover, 
we can combine the HAM model with machine learning techniques to forecast and analyze the 
behavior of the proposed model.  
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