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This study investigates the application of deep learning architectures for 
automatic Arabic text diacritization, with a particular focus on character-level 
neural networks. Four architectures were implemented: a Transformer encoder-
decoder, a BiGRU model, a baseline stacked BiLSTM, and a CBHG model. Diacritic 
Error Rate (DER) and Word Error Rate (WER) were used as evaluation metrics, 
with training and evaluation conducted on the Tashkeela corpus. The results show 
that the CBHG model achieved faster inference times while slightly outperforming 
the Transformer encoder-decoder in diacritic accuracy. However, the findings 
also suggest that the Transformer model may yield better performance with 
larger datasets, improved parameter tuning, and increased model capacity. 
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1. Introduction 
 

Arabic is currently the fourth most widely used language on the internet, largely due to the rapid 
expansion of digital Arabic content [1]. Spoken by hundreds of millions of people and recognized as 
an official language in more than a dozen countries [2], Arabic has become increasingly important in 
the global digital landscape. As the volume and diversity of Arabic electronic corpora grow, there is 
a pressing need for robust technologies capable of processing this data for various critical 
applications [3]. 

However, the advancement of Arabic Natural Language Processing (NLP) faces significant 
challenges due to the language's unique linguistic and orthographic features. Arabic is written in a 
cursive, right-to-left script with context-sensitive character forms and relies heavily on diacritical 
marks to convey meaning. These characteristics complicate the development of computational 
models that can effectively handle Arabic text [4]. 

In response, numerous automatic diacritization methods have been proposed, ranging from rule-
based and statistical techniques to more recent approaches based on Artificial Intelligence (AI), 
particularly Deep Learning (DL) and Neural Networks (NN) [5]. Recent state-of-the-art systems, such 
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as those used in speech recognition or machine translation, demonstrate the effectiveness of DL in 
Arabic language tasks [6]. 

This study investigates and evaluates deep learning-based approaches for automatic Arabic 
diacritization, with a particular focus on Transformer-based architectures. By comparing the 
performance of various models, this work aims to identify the most effective strategies for restoring 
diacritics in Arabic text and to contribute to the advancement of NLP tools for this morphologically 
rich language. 

The remainder of this paper is structured as follows: Section 2 reviews previous research and 
existing approaches to Arabic diacritization. Section 3 details the proposed methodology, including 
the architectures and training settings used. Section 4 presents the experimental results and 
discusses the performance of the evaluated models. Finally, Section 5 concludes the paper and 
outlines directions for future research. 
 
2. Related works  

Automatic diacritization of Arabic text is one of the most challenging tasks in Arabic Natural 
Language Processing (NLP). Researchers have explored several approaches to tackle this problem, 
including rule-based, statistical, hybrid, and deep learning methods. 

Rule-based techniques rely on a deep understanding of Arabic grammar and morphology to 
construct a predefined set of linguistic rules for diacritic restoration. Although such systems can be 
effective in specific contexts, they often lack generalizability. Some systems have combined rule-
based approaches with statistical or machine learning methods. For example, El-Imam [7] employed 
this strategy in a text-to-speech system, while Cherradi and El Haddadi [8] used it in various NLP 
applications such as machine translation and named entity recognition. 

Purely statistical approaches have also been widely explored. One early study [9] developed a 
Hidden Markov Model (HMM) for both Hebrew and Arabic. Using the Quranic corpus for Arabic, the 
system achieved a Word Error Rate (WER) of 14% with case endings (CE). Nelken and Shieber [10] 
proposed a system based on weighted finite-state transducers and a combination of three 
probabilistic language models: a word-based model, a letter-based model, and an orthographic 
model. Their best configuration, using trigram word models with clitic concatenation and four-gram 
letter models, achieved 23.61% WER and 12.79% Diacritic Error Rate (DER) with CE, and 7.33% WER 
and 6.35% DER without CE  [11]. 

In recent years, Deep Neural Networks (DNNs) have shown considerable improvements in Arabic 
diacritization. Many models are built using sequential architectures based on Recurrent Neural 
Networks (RNNs) combined with fully connected layers. Al Sallab et al. [12] developed a system using 
DNNs with Confused Sub-Classes Resolution (CSR), achieving 12.7% WER and 3.8% DER with CE. 
Abandah et al. [13] introduced a model based on Long Short-Term Memory (LSTM) networks that 
significantly improved performance, obtaining 5.82% WER and 2.09% DER with CE, and 3.54% WER 
and 1.28% DER without CE. 

Other works have explored variations of deep learning models. For instance, [14] evaluated 
several architectures and configurations, with their best model—a three-layer bidirectional LSTM—
achieving 8.14% WER and 5.08% DER with CE. Fadel et al. [15] used Feedforward Neural Networks 
(FFNNs) and RNNs combined with techniques such as one-hot encoding, embeddings, Conditional 
Random Fields (CRF), and Block-Normalized Gradient (BNG), reaching 7.69% WER and 2.60% DER 
with CE, and 4.57% WER and 2.11% DER without CE. 

Mubarak et al. [16] proposed a character-level sequence-to-sequence model using a Neural 
Machine Translation (NMT) framework applied to overlapping word windows. Their system achieved 
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state-of-the-art results with 4.49% WER and 1.21% DER with CE. The encoder-decoder architecture 
proposed in this paper is similar to theirs, but is adapted from a text-to-speech (TTS) model with 
significant modifications to suit the diacritization task. Notably, our model employs location-
sensitive attention [17], whereas Mubarak et al. used content-based attention [18]. Finally, Al-
Thubaity et al. [19] developed a model combining bidirectional LSTM networks with a CRF layer, 
achieving 4.92% WER and 1.34% DER on the Holy Quran corpus. 

 
3. Methodology 

In this section, we present the implementation of four character-level deep learning 
architectures for Arabic text diacritization. The first model is a baseline sequence model based on 
stacked bidirectional Long Short-Term Memory (BiLSTM) layers combined with an embedding layer, 
referred to as the RNN model. It serves as a reference to evaluate the performance of basic recurrent 
architectures on the Tashkeela corpus. The second model, named Stacked BiGRU, replaces the LSTM 
units with Gated Recurrent Units (GRUs) to reduce computational complexity while preserving 
temporal dependencies. The third model integrates a CBHG module (Convolutional Bank, Highway 
network, and Bi-GRU), inspired by the Tacotron architecture originally developed for speech 
synthesis. This model combines convolutional, recurrent, and highway layers to capture both local 
and long-range sequential patterns effectively. Finally, we implement a full Transformer Encoder-
Decoder model, adapted from sequence-to-sequence architectures used in neural machine 
translation, where the encoder processes the undiacritized input and the decoder predicts the 
corresponding diacritics sequence. In the following subsections, we describe the corpus and 
preprocessing steps, training strategies, and evaluation metrics used to assess the effectiveness of 
each model on the Arabic diacritization task. 

 
3.1 Diacritization Corpora 

Training data is a critical component for any deep learning model. Unfortunately, there is no 
widely accepted standard corpus for diacritic restoration in the Arabic language. Among the available 
datasets, two notable corpora exist: the ATL corpus (which is proprietary and requires payment) and 
the freely accessible Tashkeela corpus. In this study, we utilize the Tashkeela corpus, which consists 
of 97 classical Arabic texts totaling approximately 75 million fully vocalized words. This rich dataset 
provides a substantial resource for training and evaluating automatic Arabic diacritization models. 

 
3.2 Corpus Preprocessing 

Effective preprocessing of the corpus is crucial to ensure the quality and consistency of the input 
data for deep learning models. This process involves multiple steps designed to clean, normalize, 
and structure the raw text data before feeding it into the models. As depicted in Figure 1, the 
preprocessing pipeline includes data cleaning, transliteration, diacritic normalization, tokenization, 
special token management, and feature extraction. 

• Data Cleaning: All characters except Arabic letters, diacritics, and punctuation marks are 
removed from the corpus. This step is essential to retain only the characters relevant to 
the diacritization task, allowing the models to focus on meaningful inputs.  

• Transliteration: The cleaned Arabic text is then transliterated into Buckwalter encoding, 
a system that maps Arabic letters to ASCII characters. For example, the Arabic letter  ك is 
transliterated as "k", and ت as "t". This transliteration facilitates character-level 
tokenization and standardizes the input format for neural network models.  
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• Diacritic Normalization: This step ensures a consistent ordering of combined diacritics. 
For instance, sequences such as "a~" (fatha followed by shadda) are normalized to "~a" 
(with shadda preceding fatha). Normalizing the diacritic order prevents alignment errors 
during tokenization and improves the accuracy of the model's diacritic tagging.  

• Tokenization: The transliterated text is segmented into (character, diacritic) pairs. If a 
character does not carry a diacritic, a special tag such as <NT> (No Tashkeel) is assigned. 
This token-level annotation is vital for training sequence labeling models that predict the 
correct diacritic for each character.  

• Special Token Management: Special tokens are added to define the boundaries and 
structure of sequences, including: <BOS> (Beginning of Sequence), <EOS> (End of 
Sequence), <PAD> (used to pad shorter sequences), <MASK> (optional, used in models 
like Transformers); These tokens help the model understand sequence limits and support 
batch training with inputs of variable length.  

• Feature Extraction: During model training, embeddings are learned automatically 
through backpropagation. Each input character or word is initially transformed into a 
dense vector via an embedding layer initialized with numeric values. These vectors serve 
as inputs to recurrent layers such as LSTM or GRU, which make predictions. The error 
between predicted and actual labels is calculated and propagated backward through the 
network, updating all model parameters, including the weights of the embedding layer. 

 

 
                                                             

Fig. 1. Data preprocessing pipeline. 

 
3.3 Baseline Model 

The objective of this model is to evaluate the performance of a lightweight recurrent neural 
network architecture for Arabic text diacritization. The model begins with a 128-dimensional 
embedding layer that converts each input token into a dense vector representation. This is followed 
by one or more stacked bidirectional Long Short-Term Memory (BiLSTM) layers, each consisting of 
128 hidden units in both the forward and backward directions. These recurrent layers are designed 
to capture contextual dependencies from both the past and future within the character sequence. 
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The output of the final BiLSTM layer is passed through a fully connected (dense) layer equipped with 
a softmax activation function, producing a probability distribution over a predefined set of diacritic 
classes. In total, the model predicts among 15 classes, including all common Arabic diacritics as well 
as a special class for characters without diacritics. The total number of trainable parameters depends 
on the number of BiLSTM layers used. For a single-layer configuration, the model contains 
approximately X million parameters (to be computed based on the actual vocabulary size and input 
sequence length). This architecture serves as a baseline for evaluating the performance of more 
sophisticated models such as the CBHG module and Transformer-based encoder-decoder 
frameworks. Figure 2 depicts the architecture of the baseline model, illustrating the embedding 
layer, stacked BiLSTM layers, and the final softmax classification layer. 

 

 

Fig. 2. Architecture of the baseline model [20] 

Mat et al., [7] has performed a comprehensive flow visualization study on blunt-edge delta wing. 
The primary vortex is developed at certain chordwise position and progress upstream with angle of 
attack; however, there is no data in VFE-2 indicating that the vortex progressed up to the Apex region 
with angle of attack increases. 
 
3.4 BiGRU Model 

This architecture is designed to perform Arabic text diacritization using a compact and 
computationally efficient recurrent neural network. It starts with a 128-dimensional embedding 
layer, which transforms each input token into a dense vector representation suitable for processing 
by the network. The embedded sequence is then passed through two stacked bidirectional Gated 
Recurrent Unit (BiGRU) layers, each comprising 128 hidden units in both the forward and backward 
directions. These recurrent layers enable the model to capture contextual dependencies from both 
preceding and succeeding tokens, which is essential for accurately predicting diacritics in context-
sensitive scripts like Arabic. The final output is produced by a fully connected layer, which maps the 
output of the last BiGRU layer to a set of diacritic classes. Instead of applying a softmax activation, 
the model outputs raw logits, making it compatible with training using loss functions such as sparse 
categorical cross-entropy with logits. The total number of trainable parameters depends on the 
vocabulary size and input sequence length, but remains relatively low compared to more complex 
architectures. This makes the BiGRU model an attractive option when balancing performance and 
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computational efficiency. Figure 3 illustrates the overall architecture of the BiGRU model, 
highlighting the embedding layer, the stacked bidirectional GRU layers, and the output layer 
producing raw logits for classification. 

 

Fig. 3. Architecture of the BiGRU model [21]  

 
3.5 CBHG Model 

The CBHG model is designed as an efficient encoder-based architecture for Arabic text 
diacritization. Unlike typical encoder-decoder frameworks used in sequence-to-sequence tasks—
where the input and output sequence lengths may differ—diacritization has a one-to-one alignment 
between input and output tokens. This allows us to simplify the architecture by using only the 
encoder component, without the need for an autoregressive decoder. The core of this model is the 
CBHG module (Convolutional Bank, Highway network, and Bidirectional GRU), originally proposed in 
the Tacotron architecture for speech synthesis. We adapted it for the diacritization task by 
integrating a fully connected projection layer followed by a softmax layer, enabling the model to 
predict a probability distribution over possible diacritics for each character (see Figure 4). 
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Fig. 4. Architecture of the CBHG model [22] 

The architecture consists of several sequential components. It begins with a 128-dimensional 
embedding layer that processes the input sequence, transforming each character into a dense vector 
representation. The resulting embeddings are then passed through a two-layer pre-net, where each 
layer contains 128 units with ReLU activation and a dropout rate of 0.3. This pre-net introduces non-
linearity and regularization, preparing the representations for the core CBHG module. The CBHG 
block, which combines a convolutional bank, max-pooling, highway networks, and a bidirectional 
GRU, captures both local and long-range dependencies in the character sequence. The output of the 
CBHG module is then passed through a fully connected layer that projects the sequence 
representations onto the space of possible diacritic classes. Finally, a softmax layer is applied to 
produce a probability distribution over the diacritic labels for each character in the sequence. 

The model contains approximately 14 million trainable parameters, which is significantly more 
than the Transformer-based encoder-decoder model. However, it offers faster inference because it 
predicts all diacritics in parallel, as opposed to the sequential decoding used in typical encoder-
decoder setups. 

 
3.6 Transformer encoder-decoder Model 

The Transformer Encoder-Decoder (ED) model employed in this study follows a standard 
sequence-to-sequence architecture. It consists of an encoder and a decoder, each comprising 
multiple layers with an internal dimensionality of 512 and 16 attention heads. The model is initialized 
randomly and trained from scratch, without requiring any pretraining on external corpora. This 
architecture directly leverages fully diacritized data, such as the Tashkeela corpus, to model the 
diacritization task as a translation problem. The input sequence consists of unvocalized Arabic text, 
while the output sequence represents the corresponding diacritics. At each decoding step, the model 
generates one diacritic mark, conditioned on the entire unvocalized input and all previously 
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predicted diacritics. This auto-regressive generation allows the decoder to take into account both 
global context and historical predictions, thereby improving the quality of sequential labeling. Figure 
5 illustrates the Transformer encoder-decoder architecture, showing the flow from unvocalized 
input through the encoder, and the step-by-step generation of diacritics by the decoder. 

 

Fig. 5. Architecture of the Transformer encoder-decoder model [23] 

3.7 Diacritization systems evaluation 
The performance of Arabic diacritization systems is commonly assessed using two standard 

metrics: Diacritization Error Rate (DER) and Word Error Rate (WER). Both metrics can be computed 
with or without Case Ending (CE), depending on whether the final character of each word is included 
in the evaluation. When evaluated without CE, the last character of each word is excluded, since its 
diacritic is generally determined by grammatical and syntactic context. As a result, DER and WER 
without CE usually yield lower (i.e., better) error rates, as they reflect the system’s ability to recover 
internal diacritics independent of syntactic rules. In contrast, metrics with CE provide a measure of 
overall performance, including grammatical accuracy. 

The Diacritization Error Rate (DER) measures the proportion of characters for which the diacritic 
is incorrectly predicted. It is computed as shown in Eq. 1: 

 

 𝐷𝐸𝑅 =  
𝐷𝑤

𝐷𝑤+𝐷𝑐
                               (1) 

 
Where: 𝐷𝑤  is the number of incorrectly predicted diacritics; 𝐷𝑐  is the number of correctly 

predicted diacritics. This calculation includes all characters, including punctuation and whitespace. 
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If a character has multiple diacritics, they are treated as a single composite unit. When DER is 
computed without CE, the final character of each word is excluded from the error count. 

The Word Error Rate (WER) measures the percentage of words that contain at least one 
incorrectly diacritized character. It is defined as illustrated in Eq. 2: 

 

𝑊𝐸𝑅 =  
𝑊𝑢

𝑊𝑢+𝑊𝑐
                               (2) 

 
Where: 𝑊𝑢  is the number of incorrectly diacritized words; 𝑊𝑐  is the number of fully correct 

words. A word is considered incorrect if any of its characters has a wrong or missing diacritic. For 
WER without CE, two words are considered equal if all characters except the final one have identical 
diacritics. 

 
3. Results and Discussions 

We trained the three models using three different subsets extracted from the Tashkeela corpus. 
Both the baseline and the CBHG models were trained on a Tesla V100 GPU with a batch size of 64. 
For the Transformer encoder-decoder model, the same GPU was used but with a smaller batch size 
of 32, due to its higher computational demand. Table 1 presents the experimental results for all 
three models. 

 
Table 1. Performance Comparison of Diacritization Models on the Tashkeela Corpus 

Model DER    WERRER 

Baseline 0.4918   0.00010222 
BiGRU 0.2622   0.00014222 
CBHG 0.2915   0.00017222 

 
Since the CBHG model outperformed the baseline and Transformer models, we performed a 

random search to optimize its hyperparameters. After tuning, the CBHG model showed a significant 
improvement in performance: the Diacritization Error Rate (DER) decreased from approximately 
0.29 to 0.26, indicating a reduction in diacritic prediction errors. Meanwhile, the Word Error Rate 
(WER), which was already very low at 0.00017, remained nearly unchanged. This suggests that 
hyperparameter tuning mainly enhanced the character-level diacritic accuracy without substantially 
affecting the word-level structure, which was already well preserved. Figure 6 illustrates the training 
accuracy and loss curves for the CBHG model, demonstrating stable convergence and consistent 
improvement throughout the training process. 
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Fig. 6. Learning Progression: Accuracy and Loss over Training Epochs for 
the CBHG Model. 

 
The experimental results show that the CBHG model slightly outperforms the other architectures 

in terms of diacritization accuracy. This can be attributed to its effective combination of 
convolutional layers, highway networks, and bidirectional GRUs, which enable it to capture both 
local and mid-range linguistic patterns inherent in Arabic’s orthographic and morphological 
structure. Additionally, the CBHG’s non-autoregressive design facilitates parallel inference, 
significantly reducing prediction time—a practical advantage over the Transformer model for real-
time applications. 

In contrast, the Transformer model, leveraging its self-attention mechanism, excels at modeling 
long-range dependencies and complex contextual relationships. Despite this strength, in our 
experiments, the Transformer did not surpass the CBHG’s performance, likely due to the absence of 
pretraining and the limited size of the training corpus. We anticipate that its capabilities could be 
greatly enhanced through training on larger datasets or fine-tuning with pretrained Arabic language 
models such as AraBERT or mBART. 

The baseline BiLSTM model exhibited the lowest performance, mainly due to its limited capacity 
to capture long-term dependencies. The BiGRU model improved upon this by replacing LSTM units 
with more efficient gated recurrent units, resulting in better accuracy with fewer parameters and 
shorter training times. Qualitative analysis revealed that the Transformer occasionally produced 
inconsistencies, particularly with short or ambiguous words lacking clear grammatical cues. This is 
likely because the model’s reliance on self-attention may struggle when contextual signals are 
sparse. Meanwhile, the CBHG’s convolutional front-end proved more robust in these cases, 
effectively capturing local character-level patterns critical in morphologically rich languages like 
Arabic. Overall, while the CBHG model demonstrates superior accuracy and efficiency in the current 
experimental setup, the Transformer remains a highly promising approach, especially for future 
work involving larger corpora, advanced fine-tuning, and domain adaptation. 
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4. Conclusions 

In this study, we investigated several deep learning architectures for automatic Arabic 
diacritization, including a baseline stacked BiLSTM, a stacked BiGRU, a CBHG-based model, and a 
Transformer encoder-decoder. Our experiments, conducted on the Tashkeela corpus and evaluated 
using Diacritization Error Rate (DER) and Word Error Rate (WER), demonstrate that the CBHG model 
slightly outperforms the Transformer encoder-decoder in terms of diacritic prediction accuracy. 
Nevertheless, the Transformer architecture remains a promising approach due to its superior ability 
to capture long-range dependencies through self-attention mechanisms. We anticipate that with 
larger training datasets, increased model capacity, and more extensive hyperparameter 
optimization, the Transformer model’s performance could surpass that of the CBHG. Future work 
will explore these directions and investigate the integration of external linguistic knowledge to 
further enhance Arabic diacritization accuracy. 
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