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Integrating Artificial Intelligence (Al) into the healthcare system has made major
progress for diagnosing disease, patient monitoring, and medical imaging,
creating a highly interconnected ecosystem for improved medical decision-
making. Al-driven disease diagnosis utilizes machine learning models to analyze
vast medical datasets, enabling quick and precise identification of diseases. This
diagnostic capability is further enhanced by Al-powered medical imaging, where
deep learning techniques, including convolutional neural networks (CNNs), refine
image analysis, segmentation, and classification, providing critical support for
precise diagnosis. Alongside these deep learning techniques, support vector
machines (SVMs) offer strong classification powers that work especially well in
situations requiring high-dimensional data processing with sparse training data.
By combining CNNs for obtaining features and SVMs for categorizing, the
advantages of both methods are combined to increase computational efficiency
and diagnostic certainty. These Al-based insights are then reinforced through
patient monitoring, where wearable sensors and loT devices continuously track
patient health, feeding real-time data into Al models that detect anomalies and
predict disease progression. The synergy between these three areas ensures a
continuous flow of medical information, enhancing predictive analytics and
personalized treatment strategies. This review examines how powered system Al
unifies disease diagnosis and patient monitoring using medical imaging into an
integrated healthcare system, discussing current challenges such as data security,
interpretability, and clinical adoption. The findings highlight Al's role in bridging
diagnostic precision, real-time monitoring, and advanced imaging, paving the way
for a more proactive and efficient healthcare framework.
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1. Introduction

The healthcare industry is currently facing complex and pressing challenges, including a rapidly
increasing patient population, limited medical resources, and the demand to improve efficiency and
accuracy in diagnosis and treatment. The increasing incidence of long-term diseases, such as cancer,
diabetes, and cardiovascular disorders, has placed an enormous burden on healthcare providers,
often resulting in delayed diagnosis, misdiagnoses, and suboptimal treatment strategies. These
challenges are exacerbated due to the overwhelming amount and intricacy of medical data, which
include electronic health records (EHRs), laboratory test results, genetic profiles, and medical imaging
including X-rays, Computed Tomography (CT) scans, and MRIs. Healthcare professionals must analyze
and interpret these diverse datasets to make informed clinical judgements, yet the increasing
workload and demand for precision make traditional diagnostic methods inefficient [1].

For instance, in disease diagnosis, physicians rely on imaging techniques such as radiology and
pathology, which require highly trained specialists to examine images manually. However, human
mistakes, time constraints, and disparities in knowledge may lead to varying interpretations. leading
to misdiagnoses or delayed treatments [2]. Similarly, in patient monitoring, it is necessary to
continuously assess vital indicators such as heart rate, blood pressure, and glucose levels, especially
for high-risk patients. However, conventional monitoring systems often fail to provide real-time
insights or predictive analysis to anticipate possible complications before they become serious [3].

Considering these difficulties, artificial intelligence (Al) has emerged as a game-changing medical
technology. Al offers solutions that can automate complex data analysis, improving diagnostic
accuracy, developing treatment planning, and supporting real-time patient monitoring are important
steps in the medical world [4]. One of the most successful applications of artificial intelligence is seen
in the field of medical imaging. This is where deep learning models, especially convolutional neural
networks (CNNs), have shown remarkable capabilities in detecting tumors, fractures, and
cardiovascular abnormalities with a level of precision comparable to or even exceeding that of human
radiologists [5]. For example, Al-based imaging systems have been utilized to detect retinal illnesses
in ophthalmology and identify lung cancer nodules on CT scans, greatly increasing the early detection
rate [6].

Beyond imaging, Al has also revolutionized clinical decision support systems (CDSS) by integrating
EHRs, genetic data, and predictive analytics to assist doctors in personalizing treatment plans and
assessing disease risks [7]. In precision medicine, Al helps analyze genetic mutations to determine
the most effective therapy for individual patients, thereby reducing trial-and-error treatment
approaches and improving patient outcomes [8]. Al-powered wearable devices and Internet of Things
(loT) monitoring systems further enable real-time tracking of vital signs, early detection of anomalies,
and predictive alerts for medical emergencies, reducing hospital readmissions and improving chronic
disease management [9].

Despite its vast potential, the adoption of artificial intelligence (Al) in healthcare is certainly not
without its challenges. One of the main concerns is the lack of interpretability and transparency in Al
models. Many deep learning algorithms operate as black boxes, which makes it difficult for
healthcare professionals to understand the basis of Al-generated diagnoses. In addition, the issue of
data privacy and security is also a very important concern. Given that Al relies on large volumes of
sensitive patient information, making it susceptible to cyber threats and ethical concerns regarding
patient confidentiality [10]. Moreover, disparities in Al adoption persist, especially in low- and
middle-income countries (LMICs), where access to Al-driven healthcare innovations is limited due to
insufficient infrastructure, regulatory constraints, and a shortage of Al expertise [11].
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To fully realize Al's potential in healthcare, it is crucial to address these challenges through
enhanced model transparency, strong data security protocol, and the development of ethical Al
frameworks. Future research should focus on human-in-the-loop Al systems, in which Al serves as an
assistive tool rather than a replacement for medical professionals, ensuring that Al complements
clinical expertise while maintaining a patient-centered and ethical healthcare approach [12].

This objective of the paper to explore the growing role of Al in the healthcare sector. analyzing
its applications, benefits, and challenges while emphasizing the importance of ethical Al
implementation, regulatory policies, and equal access to artificial intelligence-based healthcare
solutions. By advancing research in Al-assisted diagnostics, treatment planning, and real-time
monitoring, healthcare systems can move toward a more efficient, accurate and customized
approach to patient care.

The following section discusses relevant studies in the topic of (Al) in healthcare and examples of
its application. Section 3 discusses the methodology used in medical imaging. Especially, we
evaluated and compared research methods, algorithms, and datasets from other researchers that
address key performance indicators, for example sensitivity, accuracy specificity, and AUC-ROC in
medical imaging, disease diagnosis, and patient monitoring in Sec. 4. Based on the experimental
results and analyses that have been carried out using various algorithms, Sec. 5 discusses the key
findings, their implications, and the challenges associated with Al applications in healthcare. Building
on the findings and discussions from previous sections, Sec. 6 presents the conclusions drawn from
the study and explores future directions for Al applications in healthcare. Finally, Sec. 7 outlines the
key mathematical formulations and equations that underpin the development and evaluation of the
Al models discussed in this study.

2. Related Works
2.1 Medical Imaging

Medical imaging has been significantly altered by the integration of Artificial Intelligence (Al) and
Machine Learning (ML). Several studies have demonstrated how Al improves diagnostic accuracy,
speeds up analysis, and enhances decision-making in radiology and other medical fields.

SAM DeepLabV3 MedSAM SAM DeepLabVi MedSAM

Fig 1. Visualizations showcasing segmentation examples for various cancers and medical imaging modalities, while the
performance distribution is illustrated through box plots and podium plots that highlight the median, percentiles, and
frequency of ranks achieved by different methods [13].

Medical imaging research has significantly advanced with the integration of artificial intelligence
(Al) to enhance diagnostic accuracy and clinical efficiency. The Breast Screening-Al study by [14]
evaluates the impact of Al-assisted diagnosis in breast cancer screening by comparing two scenarios:
Clinician-Only and Clinician-Al. The findings demonstrate that incorporating Al reduces diagnostic
errors, with a 27% decrease in false positives and a 4% reduction in false negatives. Additionally, Al
integration improves workflow efficiency, reducing diagnosis time by an average of three minutes
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per patient, while 91% of clinicians reported increased contentment and having more faith in the
system . Beyond accuracy, the study emphasizes the importance of explainability in Al-driven
diagnostics. By providing visual explanations through heatmaps, the system enhances clinicians'
understanding and trust in Al-generated recommendations. This highlights the need for Al model
that is not only accurate, but also easy to use and transparent. The Breast Screening-Al framework
demonstrate effective ways to integrate Al into clinical work processes, offering a valuable tool to
support medical decision-making in real-world healthcare environments[15]. In addition to
improving diagnostic accuracy, the integration of Al in medical imaging also fosters collaboration
between clinicians and technology. By streamlining workflows and providing actionable insights. Al
tools empower healthcare professionals to focus more on patient care rather than administrative
tasks. Al continues to evolve, supporting clinical teams and will likely expand, opens up opportunities
for more personalised and effective healthcare solutions.

2.2 Disease Diagnosis

Diagnosis is generally organized into a structured process that aims to identify medical conditions
based on clinical findings [16]. The process includes symptom assessment as the initial stage, physical
examination of the patient, which is the doctor's action to assess symptoms from physical signs. If
necessary or require further studies are required, including laboratory tests and imaging studies.
Other diagnostic assessments can be done by reviewing both personal and family medical history, as
well as the clinical reasoning of the doctor to reach a diagnosis [17]. Al and machine learning help to
improve this with their ability to process and analyze big data to produce accurate diagnoses [18]. Al
plays an important role in medical imaging by providing a detailed view of the body with tools. For
instance, during the Corona Virus Disease (COVID-19) pandemic—first identified in Wuhan and now
a global health threat—the primary diagnostic method relies on RT-PCR (Real Time Polymerase Chain
Reaction) tests, using nasopharyngeal swabs to detect severe acute respiratory syndrome-related
coronavirus (SARS-CoV-2)-specific genes [19]. While traditional techniques like RT-PCR [20]remain
foundational, Al supports diagnostics by interpreting imaging results , predicting disease spread, or
optimizing test result analysis [21]. This integration of technology exemplifies how Al complements
conventional methods to advance precision and efficiency in modern healthcare. Al is able to
prioritise the need for ventilators and respiratory support in intensive care units by analysing data
obtained from clinical parameters. This can provide crucial information that supports more informed
resource allocation and decision-making [22]. Using Chest X Ray (CXR) and Computed Tomography
(CT) images, Al was utilized to detect and quantify COVID-19. Al can also be utilized to provide daily
updates, perform storage and trend analysis., as well as to monitor the course of treatment and
forecast the likelihood of recovery or mortality in COVID-19 [23].

2.3 Patient Monitoring

Remote patient monitoring (RPM) is a growing field in healthcare. This innovation is designed to
provide support for doctors in providing care in various medical rooms as well as general surgery.
RPM utilises flexible materials for sensors that can serve to efficiently expand patient monitoring
capabilities[9]. As a result of the COVID-19 pandemic, telehealth became a common strategy for
maintaining patients' and clinicians' safety [23]. Machine learning and image processing techniques
played a vital role in telehealth monitoring. The Al methods are capable of monitoring patients vital
signs such as heart rate, respiratory rate, oxygen saturation (Sp02), cough analysis, and blood
pressure. Rohmetra surveyed Al-powered telehealth monitoring of vital signs has demonstrated
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advantages over traditional methods. Utilising image and video processing techniques in machine
learning (ML), the system is able to identify regions of interest (ROI) on patients, such as facial
features, and then focus on these areas to estimate vital signs, including heart rate and respiratory
rate. Developing deep learning models, specifically convolutional neural networks (CNN), capable of
recognising individuals' psychological stress levels[13], [24]. Patient monitoring techniques via
telehealth have great potential in diagnosing patients' health conditions. By utilising Al telehealth
monitoring can be a more effective approach in classifying or predicting patients' vital signs [9]. In
hospitals, medical staff routinely monitor patients' health conditions and document them manually.
The collection of patient vital signs is done manually and is influenced by various factors, including
clinical workload, staff working hours, patient diagnosis, clinical leadership, and applicable national
guidelines [1] and was limited due to the lack of resources. Monitoring patients has traditionally been
done using invasive devices that require direct skin contact to assess their vital signs. However,
technological advancements in data transmission have changed the landscape of the healthcare
industry, bringing non-invasive devices that do not need to touch the patient's body, allowing for
continuous monitoring. These innovations have revolutionised the way we traditionally monitor
patient health, giving patients the opportunity to monitor their health conditions remotely, whether
in a hospital, care facility or in their own homes[25]. In this section, we will discuss the Remote Patient
Monitoring (RPM) architecture that supports these technologies [26].

2.4 Convolutional Neural Network

Convolutional neural networks (CNNs) are extremely useful for diagnosing diseases from medical
pictures like MRIs and X-rays because oftheir remarkable capacity to manage image data [1].
Convolutional neural networks (CNNs) and data mining methods are used in deep learning to add
layers that aid in finding patterns in the data. deep learning models created especially for handling
structured grid data, such as pictures [27]. CNNs extract information and develop complex
representations from high-dimensional data by combining convolutional, pooling, and fully
connected layers [28]. CNN, also referred to as ConvNet, is a popular kind of Artificial Neural Network
(ANN) that is categorized as a supervised technique. This approach is renowned for its capacity to
identify and decipher patterns. CNN is helpful for image analysis, where multiple techniques are
employed to construct one image, because of its ability to recognize patterns [29]. These parameters
include radiation absorption in X-ray imaging, sound pressure in ultrasound, and high frequency
signal capacity in an MRI [30]. While several measurements are gathered for multichannel imaging,
each pixel in a digital image is determined by a single measurement. Diagnostic images are created
using a range of imaging modalities, such as computed tomography (CT), X-ray, magnetic resonance
imaging, and functional magnetic resonance imaging (MRI and fMRI). positron emission tomography,
Image classification, segmentation, rsynthesis, and regression are common DL applications with
medical imaging [31]. Many medical diseases require medical imaging for diagnosis and monitoring,
and the interpretation of these pictures has historically depended significantly on the knowledge of
radiologists and other medical experts, which can be laborious and prone to human mistake [32].
CNNs excel at this role by automatically distinguishing organs or lesions from surrounding tissues in
images, allowing surgeons to plan and perform surgeries more precisely. CNNs have proven effective
in the diagnosis and detection of a wide range of ilinesses, such as neurological disorders, pneumonia,
and other lung conditions, and cancer [33]. Popular CNN designs include VGGNet, ResNet, and
Inception 9. Formula (1) defines the convolution process between two functions. F and G:
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The following are the variables and symbols used:

(f * g ) (t) : This shows how functions f and g are convolutional at point t.

f () : Thisis a convolved function.

g(t — 1) : The second convolved function, with a shift of

t : The variable used to evaluate the convolution result:

7 : The integral's integration variable, which would indicate a possible change in the

function g.
Formula (1) shows how shifting g across f alters the function g's influence on f. This process sheds light on
the interactions and effects between these functions [34].

2.5 Support Vector Machine

Because of their capacity to represent intricate relationships between inputs and outputs,
Support Vector Machines (SVMs) have grown in popularity in scientific image analysis [35]. SVMs are
of exceptional quality because of their greater performance overall and their capacity to handle non-
linear data in over-dimensional information units [31]. In clinical image analysis, SVMs are used in
various packages, including tumor detection in magnetic resonance imaging (MRI) and lesion
classification in computed tomography (CT). SVM is a machine learning tool that uses the concept of
data classification as its foundation. To classify the data, it builds an N-dimensional hyperplane that
divides it into two groups as efficiently as possible, linear and non-linear [35]. The dot product is the
default kernel function, which transfers the training data into a kernel space. For non-linear cases,
SVM uses a kernel function that plays a role in mapping the data into different spaces, thus allowing
the separation of data even with very complex boundaries [36].

3. Methodology

This study employs a comprehensive approach to explore the application of Al in healthcare,
especially focuses on its important role in diagnostics, treatment planning, and real-time patient
monitoring. The methodology used is composed of several key components, such as data collection,
algorithm selection, experimental design, and analysis. Our research flow can be seen at Figure 2.
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The Utilization of Artificial Intelligence in Healthcare

: Application: Method Data :
, 1. Medical Imaging 1. Support Vector Machine 1. Electronic health records (EHRs) I
2. Diseases Diagnosis 2. Random Forest 2. Laboratory test results
I 3. patient Monitoring &) 3. CNN =) 3. Genetic profiles I
[ 4. ResNet 4. Medical imaging including X-rays, I
] 5. VGG-16 Computed Tomography (CT) I
] 6. XAl scans, and MRIs ]
] 7. VGGNet ]
] ]
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Review, Challenges, and Future Research

Fig 2. Research workflow.

The diagram on Figure 2 illustrates the utilization of Artificial Intelligence (Al) in healthcare by
highlighting its applications, methods, and types of data involved. Al is applied in three major areas:
medical imaging, disease diagnosis, and patient monitoring. These applications are supported by
various Al methods, including traditional machine learning algorithms such as Support Vector
Machines and Random Forests, as well as deep learning models like Convolutional Neural Networks
(CNNs), ResNet, VGG-16, and VGGNet. Additionally, Explainable Al (XAl) plays a role in ensuring
interpretability and transparency of the models. The effectiveness of these methods depends on the
diverse healthcare data they process, which includes electronic health records (EHRs), laboratory test
results, genetic profiles, and medical imaging data such as X-rays, CT scans, and MRIs. Overall, this
framework emphasizes how Al integrates applications, methods, and data sources to advance
healthcare, while also pointing to the need for continued review, addressing challenges, and
exploring future research directions.

3.1 Data Collection
We explored a range of datasets covering some medical fields to study the impact of Al in
healthcare.

3.1.1 Medical Imaging Data

In the field of medical imaging, open-access datasets with annotated images are very important,
especially for diseases of the retina and lung cancer. For instance, datasets featuring lung cancer
nodules derived from CT scans provide a wealth of information that deep learning models can use as
training data. These images are meticulously labeled to indicate the presence of nodules, which
allows researchers and developers to create algorithms that can accurately identify and classify these
potentially malignant growths.
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Radiomic score = 1.150, P = 0.760
f\ Radlographic score = 0.062, P = 0.516

Fig 3. Representative images and segmentation results of nodules. (a, b, c) A 52-year-
old male with low-risk lung adenocarcinoma. (d, e, f) A 56-year-old female with high-
risk lung adenocarcinoma. For the radiomic model, the threshold values for predicting
high-risk lung cancer were 0.387, and for the radiographic model, the values were
0.364 [11].

Radiomic score = -0.500, P = 0.378
< Radiographic score = -0.638, P = 0.346

The significance of these datasets extends beyond mere image collection. They are foundational
for deep learning model training and validation, with a focus on Convolutional Neural Networks
(CNNs). CNNs can automatically learn hierarchical features from raw pixel data, which makes them
particularly ideal for image analysis. Various architectures of CNNs have been developed to enhance
performance in medical imaging tasks. For example, ResNet (Residual Network) introduces skip
connections that allow gradients to flow more easily during training, enabling the construction of
very deep networks without suffering from the vanishing gradient problem. This architecture has
been widely adopted for tasks such as lung nodule detection, where depth and feature extraction
are crucial. As shown in Figure 4, the architecture of the FA-ResNet and the FA-Res module proposed
by [12] further builds upon this foundation to improve accuracy and robustness in medical imaging
applications.
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Fig 4. Architecture of the FA-ResNet (top) and FA-Res’s module (bottom) [12]

EfficientNet is another notable architecture that optimizes the balance between network width,
depth, and resolution. In order to achieve great performance with fewer parameters, EfficientNet
employs an effective scaling technique that balances the model's depth, width, and resolution. This
makes it ideal for classifying medical images, such as identifying retinal disorders. Because of its high
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efficiency, it runs and trains more quickly, which is crucial in clinical settings where every second
counts. As illustrated in Figure 5, the general workflow of the proposed method based on EfficientNet
[37] highlights the streamlined and scalable approach that underpins its effectiveness in medical
image analysis.
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Fig 5. The general workflow of the proposed method, Efficient Net [37].

Medical imaging also uses conventional machine learning methods such as Support Vector
Machines (SVM) in addition to CNNs. For classification jobs where the dataset is smaller or when the
features have been extracted using CNNs, SVMs are especially beneficial. SVMs can efficiently classify
images based on the features learned from the annotated datasets by locating the best hyperplane
separating several classes in the feature space.

Because it directly influences how well Al-driven diagnostic tools operate in clinical environments,
this training and validation approach is essential to improve patient outcomes. Combining modern
CNN architectures with conventional machine learning techniques such as SVMs offers a strong
framework for addressing difficult medical imaging problems, therefore opening the door for creative
healthcare solutions.

The healthcare industry is currently facing complex and pressing challenges, including a rapidly
increasing patient population, limited medical resources, and the demand to improve efficiency and
accuracy in diagnosis and treatment. The increasing incidence of long-term diseases, such as cancer,
diabetes, and cardiovascular disorders, has placed an enormous burden on healthcare providers,
often resulting in delayed diagnosis, misdiagnoses, and suboptimal treatment strategies. These
challenges are exacerbated due to the overwhelming amount and intricacy of medical data, which
include electronic health records (EHRs), laboratory test results, genetic profiles, and medical imaging
including X-rays, Computed Tomography (CT) scans, and MRIs. Healthcare professionals must analyze
and interpret these diverse datasets to make informed clinical judgements, yet the increasing
workload and demand for precision make traditional diagnostic methods inefficient.

For instance, in disease diagnosis, physicians rely on imaging techniques such as radiology and
pathology, which require highly trained specialists to examine images manually. However, human
mistakes, time constraints, and disparities in knowledge may lead to varying interpretations. leading
to misdiagnoses or delayed treatments [2]. Similarly, in patient monitoring, it is necessary to
continuously assess vital indicators such as heart rate, blood pressure, and glucose levels, especially
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for high-risk patients. However, conventional monitoring systems often fail to provide real-time
insights or predictive analysis to anticipate possible complications before they become serious [3].

Considering these difficulties, artificial intelligence (Al) has emerged as a game-changing medical
technology. Al offers solutions that can automate complex data analysis, improving diagnostic
accuracy, developing treatment planning, and supporting real-time patient monitoring are important
steps in the medical world [38]. One of the most successful applications of artificial intelligence is
seen in the field of medical imaging. This is where deep learning models, especially convolutional
neural networks (CNNs), have shown remarkable capabilities in detecting tumors, fractures, and
cardiovascular abnormalities with a level of precision comparable to or even exceeding that of human
radiologists [39]. For example, Al-based imaging systems have been utilized to detect retinal illnesses
in ophthalmology and identify lung cancer nodules on CT scans, greatly increasing the early detection
rate [6].

Beyond imaging, Al has also revolutionized clinical decision support systems (CDSS) by integrating
EHRs, genetic data, and predictive analytics to assist doctors in personalizing treatment plans and
assessing disease risks [7]. In precision medicine, Al helps analyze genetic mutations to determine
the most effective therapy for individual patients, thereby reducing trial-and-error treatment
approaches and improving patient outcomes [8]. Al-powered wearable devices and Internet of Things
(loT) monitoring systems further enable real-time tracking of vital signs, early detection of anomalies,
and predictive alerts for medical emergencies, reducing hospital readmissions and improving chronic
disease management [9].

Despite its vast potential, the adoption of artificial intelligence (Al) in healthcare is certainly not
without its challenges. One of the main concerns is the lack of interpretability and transparency in Al
models. Many deep learning algorithms operate as black boxes, which makes it difficult for
healthcare professionals to understand the basis of Al-generated diagnoses. In addition, the issue of
data privacy and security is also a very important concern. Given that Al relies on large volumes of
sensitive patient information, making it susceptible to cyber threats and ethical concerns regarding
patient confidentiality [13]. Moreover, disparities in Al adoption persist, especially in low- and
middle-income countries (LMICs), where access to Al-driven healthcare innovations is limited due to
insufficient infrastructure, regulatory constraints, and a shortage of Al expertise [40], [41].

To fully realize Al's potential in healthcare, it is crucial to address these challenges through
enhanced model transparency, strong data security protocol, and the development of ethical Al
frameworks. Future research should focus on human-in-the-loop Al systems, in which Al serves as an
assistive tool rather than a replacement for medical professionals, ensuring that Al complements
clinical expertise while maintaining a patient-centered and ethical healthcare approach [12].

This objective of the paper to explore the growing role of Al in the healthcare sector. analyzing
its applications, benefits, and challenges while emphasizing the importance of ethical Al
implementation, regulatory policies, and equal access to artificial intelligence-based healthcare
solutions. By advancing research in Al-assisted diagnostics, treatment planning, and real-time
monitoring, healthcare systems can move toward a more efficient, accurate and customized
approach to patient care.

The following section discusses relevant studies in the topic of (Al) in healthcare and examples of
its application. Section 3 discusses the methodology used in medical imaging. Especially, we
evaluated and compared research methods, algorithms, and datasets from other researchers that
address key performance indicators, for example sensitivity, accuracy specificity, and AUC-ROC in
medical imaging, disease diagnosis, and patient monitoring in Sec. 4. Based on the experimental
results and analyses that have been carried out using various algorithms, Sec. 5 discusses the key
findings, their implications, and the challenges associated with Al applications in healthcare. Building
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on the findings and discussions from previous sections, Sec. 6 presents the conclusions drawn from
the study and explores future directions for Al applications in healthcare. Finally, Sec. 7 outlines the
key mathematical formulations and equations that underpin the development and evaluation of the
Al models discussed in this study.

3.1.2 Electronic Health Records (EHRs)

Accessing de-identified Electronic Health Record (EHR) datasets is a crucial step in advancing
healthcare research and improving patient care. These datasets typically include a wealth of
information, such as patient demographics, which encompass age, gender, ethnicity, and
socioeconomic status. Understanding these demographic factors is vital, as they can significantly
influence health outcomes and treatment responses [9]. For instance, certain diseases may manifest
differently across various demographic groups, and recognizing these differences can lead to more
personalized and effective treatment plans. In addition to demographics, de-identified EHR datasets
contain comprehensive medical histories of patients. This includes information about past illnesses,
surgeries, medications, allergies, and family medical history. Such detailed records allow researchers
and healthcare professionals to identify patterns and correlations that may not be immediately
apparent. For example, analyzing the medical histories of patients [42] with similar conditions can
help uncover risk factors or commonalities that could inform future treatment strategies. Moreover,
treatment outcomes are a critical component of these datasets. This information reflects the
effectiveness of various interventions and therapies, providing insights into what works best for
specific patient populations. Researchers are able to build predictive models that predict how many
different patients may react to specific treatments based on their individual traits and medical
histories by analyzing treatment outcomes. In clinical settings, these models can be useful in helping
healthcare professionals make well-informed decisions on patient care. A further significant benefit
is the integration of this rich data into clinical decision support systems. These systems use cutting-
edge algorithms and machine learning methods to evaluate EHR data and give medical professionals
advice in real time [1]. For example, based on a patient's medication history, a clinical decision
support system may notify a doctor about possible drug interactions or suggest different treatment
options based on the patient's medical history and demographics. In summary, accessing de-
identified EHR datasets that include patient demographics, medical history, and treatment outcomes
is essential for developing predictive models and clinical decision support systems. This data not only
enhances our understanding of patient populations but also empowers healthcare providers to
deliver more personalized and effective care, ultimately leading to improved health outcomes [43].

3.1.3 Wearable Device Data

In the medical field, data gathered from wearable health monitoring devices is becoming more
and more important, especially for real-time vital sign tracking and its consequences for patient
management. These gadgets, which include fitness trackers and smartwatches, continuously monitor
vital signs, including blood pressure, oxygen saturation, and heart rate. Health care providers are able
to quickly learn about a patient's health status thanks to this real-time data, letting them take prompt
actions when needed. The continuous monitoring capability of wearables offers significant
advantages over traditional methods, which often rely on periodic checkups. For example, sudden
changes in vital signs, such as an elevated heart rate or decreased oxygen levels, can be detected
immediately, prompting healthcare professionals to take action [40]. Additionally, integrating this
data into electronic health records (EHRs) provides a comprehensive view of a patient's health
history, allowing for better-informed clinical decisions. Beyond individual patient management, real-
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time vital sign tracking from wearables can improve population health outcomes. By aggregating data
from multiple patients, healthcare organizations can identify trends that may indicate broader public
health issues, such as an outbreak of illness. As technology advances, the integration of wearable
data into healthcare systems is expected to play a crucial role in enhancing health outcomes and
optimizing patient management strategies [9], [43].

3.2 Algorithm Selection

Given the complexity of the datasets, several Al algorithms to evaluate performance in different
healthcare applications

3.2.1 Convolutional Neural Networks (CNNs)

Load data

Image Augmentation and preprocessing of data

CNN Model
Building

YES

Less Loss and More

Accuracy Testify CNN

Updating the Model

Fig 6. Steps for detection using CNN [44].

Convolutional neural networks are most frequently used for image processing tasks, particularly
the identification of tumors in medical pictures. CNNs' ability to automatically extract features from
images is perhaps their most alluring feature. This makes them ideal for understanding complex
visual information. This is a great advantage of medical imaging since it gives the ability to identify
minute patterns and anomalies that may indicate the existence of tumor or other disease conditions
[45], [46].

CNNs operate through a series of layers that process the input image in a hierarchical manner.
The initial layers typically focus on detecting simple features such as edges and textures, while deeper
layers progressively capture more complex patterns, such as shapes and specific structures within
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the image. This hierarchical feature extraction is particularly beneficial in medical imaging, where the
visual characteristics of tumors [46] can vary significantly based on their type, size, and location. For
instance, a CNN trained on a dataset of mammograms [33] can learn to differentiate between benign
and malignant masses by recognizing specific features associated with each [28].

The training process of CNNs involves using large, annotated datasets, which are essential for
teaching the model to recognize and classify different types of tumors accurately. These datasets
often include thousands of labeled images, allowing the CNN to learn from a diverse range of
examples. As the model trains, it adjusts its internal parameters so that the gap between its outputs
and the real labels decreases to make it progressively more accurate over time. It is this supervised
learning that plays a crucial role in developing successful diagnostic tools that can assist oncologists
and radiologists in making correct decisions regarding patient care [33], [43].

In summary, CNNs have become a building block in the analysis of medical images, particularly
when it concerns tasks such as tumor detection. By virtue of their ability to automatically extract and
learn image features, they have the capability of identifying complex patterns that may be indicative
of several medical conditions. Through ongoing study and development, uses of CNNs in imaging
medicine will no doubt extend far and wide in generating more effective and accurate diagnoses that
can pave the way towards improved patient results [47].

3.2.2 Random Forest and Support Vector Machine (SVM)

Random Forest and Support Vector Machines (SVM) are among the most popular machine
learning algorithms in healthcare, especially when dealing with structured data from Electronic
Health Records (EHRs). These algorithms have achieved great success in a range of predictive tasks,
including patient outcome prediction, chronic disease risk prediction, and clinical decision support.

An ensemble learning approach called Random Forest builds numerous decision trees and
aggregates their results to improve forecast stability and accuracy [48]. Because it can manage non-
linear interactions, overfitting robustness, and the provision of feature importance scores that
encourage clinical interpretability, it is well-suited to manage complicated medical datasets.

SVM, on the other hand, is known for its effectiveness in high-dimensional data classification,
such as genomic expressions and medical imaging. By applying kernel functions, SVMs can build non-
linear decision boundaries, making them useful for distinguishing between clinically similar but
statistically distinct conditions [49] .

The use of these algorithms in medical prediction systems is growing rapidly due to their high
accuracy and robustness against outliers. Several studies have shown that Random Forest and SVM
often outperform traditional methods in the early detection of diseases such as cancer, diabetes, and
cardiovascular conditions [48], [50]

3.3 Experimental Design
3.3.1 Training and Validation

To enable the model to learn from the data in a quick way, the models were trained on various
subsets of the data. This is normally conducted in machine learning. A section of the data is provided
to the model during training so that the model finds patterns and relationships. Still another set is
utilized to make an approximation of how well the model performs. Since the model has never seen
this validation data before it was trained, it is an asset for verifying how well the model performs
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with new, unseen data. Overfitting, in which the model learns the training data but has difficulty
learning anything new, can be avoided by maintaining separate training and validation data.

We used methods like cross-validation to additionally increase the validity of the outcomes. Using
a robust statistical technique called cross-validation, a model's performance is estimated by splitting
the dataset into different subsets, or "folds." As is customary in k-fold cross-validation, the dataset is
divided into k equal parts. The model is then trained on k-1 of these parts and validated on the
remaining part. This process is repeated k times, with each fold serving as the validation set once.
The final performance metric is usually the average of the results obtained from each of the k
iterations. By its approach of validating the model through testing it across several subsets of data, it
not only provides a broader critique of how well the model works but also avoids overfitting. Cross-
validation allows the model to work across varied portions of a dataset, something that comes in
handy if the data turn out to be limited or biased. All else being equal, learning on a subset of the
dataset, applying a different validation set, and using cross-validation techniques help construct a
stronger, more robust model that can be used effectively under real-world scenarios.

3.3.2 Performance Metrics

Performance of models is evaluated based on a variety of different metrics like area under
receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy. All the above
parameters provide good information about the diagnostic potential of models, allowing scientists
and doctors to know how well the models recognize and classify issues, such as medical malignancies.

One of the simplest measures is accuracy, which is the proportion of actual outcomes (both true
positives and true negatives) out of all of the cases that were analyzed. That is, it calculates how
frequently the model predicted correctly. Although accuracy is a helpful metric, it may be deceptive,
particularly if the data is unbalanced and one class (e.g., tumor patients) greatly outnumbers the
other class (e.g., healthy patients). In this situation, a model can get high accuracy by always
predicting the majority class, without necessarily being good at recognizing the minority class.

Sensitivity, also known as recall or true positive rate, measures the model's ability to correctly
identify positive cases, such as patients with tumors. It is calculated as the number of true positives
divided by the sum of true positives and false negatives. A high sensitivity indicates that the model is
effective at detecting the condition, which is particularly important in medical contexts where
missing a diagnosis could have serious consequences.

Specificity of the model is an important part; it is an estimate of how well the model will be
capable of correctly classifying negative cases, or healthy patients. The ratio of true negatives and
false positives is divided by the number of true negatives to estimate it. To avoid unnecessary alarms,
which lead to undue worry and additional tests for healthy patients, high specificity is necessary.

The other critical metric that gives a holistic view of how the model performs across different
thresholds is the area under the receiver operating characteristic curve, or AUC-ROC. What the ROC
curve actually does is it plots the true positive rate (sensitivity) versus the false positive rate (1 -
specificity) at various threshold levels. The AUC quantifies the overall ability of the model to
discriminate between positive and negative cases, with a value of 1 indicating perfect discrimination
and a value of 0.5 suggesting no discrimination (equivalent to random guessing). A higher AUC value
indicates a better-performing model.

In summary, using a combination of metrics such as accuracy, sensitivity, specificity, and AUC-
ROC allows for a thorough assessment of the models' diagnostic capabilities. Each metric provides
unique insights, and together they help to paint a complete picture of how well the models can
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identify and classify medical conditions, ultimately guiding improvements in patient care and
treatment outcomes.

3.3.3 Real Time Monitoring Simulation

Simulated real-time monitoring scenarios were created to evaluate the effectiveness of Al in
providing timely alerts for potential health issues. These simulations are designed to mimic actual
healthcare environments where continuous monitoring of patients is essential, particularly for those
with chronic conditions or those at risk of sudden health changes. By creating these scenarios,
researchers can assess how well Al systems can analyze incoming data from various health
monitoring devices and determine whether they can accurately identify potential health problems
before they escalate.

In these simulated environments, data is generated in real-time, reflecting the types of vital signs
and health metrics that would typically be collected from wearable devices, such as heart rate, blood
pressure, oxygen saturation, and even glucose levels. The Al algorithms are then tasked with
processing this data as it comes in, looking for patterns or anomalies that may indicate health issues.
For example, if a patient's heart rate suddenly spikes or drops significantly, the Al system should be
able to recognize this change and generate an alert for healthcare providers to investigate further.

The effectiveness of the Al system is evaluated based on several criteria. One key aspect is the
timeliness of the alerts. The system must not only detect potential issues but also do so quickly
enough to allow for prompt intervention. Delays in alerting healthcare providers can lead to
worsening conditions or even life-threatening situations. Therefore, measuring the response time
from the moment an anomaly is detected to when an alert is issued is crucial.

Another important criterion is the accuracy of the alerts. The Al must minimize false positives—
alerts that indicate a problem when there is none—as these can lead to unnecessary anxiety for
patients and additional strain on healthcare resources. Conversely, the system must also avoid false
negatives, where a genuine health issue goes undetected. Both types of errors can have serious
implications for patient safety and care.

Additionally, the simulations can help assess the user interface and usability of the alert system.
It is essential that healthcare providers can easily understand and act upon the alerts generated by
Al. This includes evaluating how the alerts are presented, whether they are clear and actionable, and
how they fit into the existing workflow of healthcare professionals.

In summary, simulating real-time monitoring scenarios allows researchers to rigorously evaluate
the effectiveness of Al in providing timely alerts for potential health issues. By analyzing the
timeliness and accuracy of alerts, as well as the usability of the alert system, these simulations
contribute to the development of Al technologies that can enhance patient care and improve health
outcomes in real-world settings.

3.4 Data Analysis
3.4.1 Comparative Analysis

The best methods for particular healthcare applications were determined by comparing the
performance of several algorithms on a range of tasks. The accuracy and effectiveness of diagnostic
instruments, treatment suggestions, and patient management systems can all be greatly impacted
by the algorithm used, which makes this comparative analysis essential in the healthcare industry.
Researchers can ascertain which approaches produce the greatest results for tasks like disease
detection, patient risk assessment, and treatment outcome prediction by methodically analyzing a
variety of algorithms.
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Other algorithms from other classes of machine learning and artificial intelligence were chosen
to compare here. These are deep learning-based models like Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) and more advanced methods like support vector machines
(SVM), random forests, and more conventional statistical methods like logistic regression and
decision trees. Since all algorithms harm the same way they benefit, it is necessary to evaluate the
performance of the algorithm once implemented in certain healthcare tasks, for instance, predicting
patient readmission or detecting tumors in medical images.

Pretrained datasets that have been split into training and test sets and are representative of the
healthcare issue being addressed are generally used in the comparison process. The performance of
every algorithm is measured using performance metrics like accuracy, precision, recall, and F1 score,
and robust conclusions are obtained using methods like cross-validation. Additionally, factors like
computational efficiency and scalability are considered, as algorithms must be able to process large
volumes of data in real time, especially in critical scenarios like emergency care. Ultimately, this
comparative analysis contributes to the development of more accurate, efficient, and reliable tools
that enhance patient care and improve health outcomes.

3.4.2 Interpretability Assessment

Investigating the interpretability of Al models is a vital component of their implementation in
healthcare, particularly when it comes to understanding how these models arrive at their decisions.
This analysis is particularly significant for Convolutional Neural Networks (CNNs) utilized in medical
imaging and for models that rely on Electronic Health Records (EHRs). Interpretability refers to how
well a human can comprehend the reasons behind a decision made by an Al model. In the healthcare
industry, where choices have a significant impact on patient outcomes, it is essential to make sure Al
systems can be understood in order to promote patient and healthcare provider trust.

CNNs in medical imaging are frequently regarded as "black boxes" because they can analyze
complex visual data and identify intricate patterns without offering clear explanations of how they
arrive at specific predictions. For example, a CNN may be trained to identify tumors in radiological
images, but it can be difficult to determine which aspects of the image contributed to a particular
diagnosis. To tackle this challenge, researchers have created various methods to improve the
interpretability of CNNs. Visualization techniques such as Grad-CAM (Gradient-weighted Class
Activation Mapping), which highlight the areas of an image that had a major impact on the model's
decision-making, are one popular method. By providing visual clarifications, these methods assist
clinicians in grasping the reasoning behind the model's predictions, thereby boosting their confidence
in Al-assisted diagnostics.

Conversely, EHR-based models typically depend on structured data, including patient
demographics, medical histories, and lab results, to forecast patient outcomes or treatment
suggestions. The decision-making processes of these models can also be intricate, particularly when
they involve multiple variables and their interactions. To improve interpretability in EHR-based
models, techniques such as feature importance analysis and decision trees can be utilized. Feature
importance analysis identifies which variables most significantly affect the model's predictions,
enabling healthcare providers to recognize the key factors that influence patient outcomes. Decision
trees, in contrast, offer a clearer depiction of the decision-making process by visually outlining the
paths taken based on various input variables, making it easier for clinicians to understand the logic
behind the model's recommendations.

Moreover, assessing the interpretability of Al models, especially CNNs in medical imaging and
EHR-based models, is important for knowing that healthcare professionals can rely on and utilize
these technologies efficiently. By applying visualization techniques for CNNs and utilizing feature
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importance analysis or decision trees for EHR-based models, researchers can shed light on the
decision-making processes of these Al systems. This level of transparency not only builds trust among
users but also enhances clinical decision-making, ultimately resulting in better patient care and
outcomes.

3.4.3 Ethical Considerations

The ethical considerations surrounding data privacy, security, and fair access to Al technologies
in healthcare are especially crucial in low- and middle-income countries (LMICs). Concerns about the
privacy of data stem from the risk of sensitive health information being misused, which is often
worsened by insufficient informed consent and differing cultural views on privacy. Additionally,
security issues arise from inadequate infrastructure to safeguard health data, leaving it exposed to
cyber threats and breaches, particularly in areas without strong regulatory frameworks. These
challenges underscore the necessity for a holistic strategy to protect patient information and uphold
public confidence in healthcare systems.

Moreover, ensuring equitable access to Al technologies is a significant issue, as marginalized
groups in LMICs encounter obstacles like poor internet connectivity and financial limitations, which
can worsen existing health inequalities. To tackle these problems, it is vital to bolster regulations of
data protection, improve cybersecurity practices, and encourage inclusive access to Al solutions. By
focusing on these ethical aspects, healthcare systems can effectively utilize Al technologies to
enhance health outcomes while honoring individual rights and promoting social equity.

4. Evaluation and Comparison of Al Models in Healthcare
4.1 Evaluation of Algorithm

Medical imaging has revolutionized disease diagnosis and treatment planning through advanced
computational techniques [40]. Convolutional Neural Networks (CNNs) have become the backbone
of image-based diagnostics, excelling in tasks like tumor detection in radiology and retinal disease
classification in ophthalmology [51]. Support Vector Machines (SVMs), though traditionally used in
medical imaging for classification problems, often require handcrafted features, making them less
adaptable compared to deep learning approaches [36].

This review looks at several studies that use machine learning and deep learning algorithms for
medical imaging, disease diagnosis, and patient monitoring to determine the usefulness of Al
applications in healthcare. The evaluation is centered on essential performance indicators like
accuracy, sensitivity, specificity, and AUC-ROC [52]. The various methods used by researchers, the
algorithms used, and the performance results obtained are all reflected in this classification, which
makes it pertinent. Table 1 describes the application of Al models in healthcare.

Table 1.
Application of Al models in healthcare.
Research Research Method Dataset Algorithm Result
Topic
[18] To enhance CNN tumor Brain MRI image Resnet Model evaluation based on
identification, this work uses dataset. accuracy metrics and the
several preprocessing model's ability to highlight
methods, including bilateral tumor areas.

filtering, K-means clustering,
and Gaussian smoothing.

286



Knowledge and Decision Systems with Applications
Volume 1, (2025) 270-294

[24]

(32]

(53]

(36]

(54]

(55]

In this work, CNN's
performance in classifying
skin lesions with and without
pretreatment Region  of
Interest (Rol) extraction is
compared.

The use of pre-processing
techniques such as histogram
equalization and bilateral
filtering to improve the
accuracy of  pneumonia
detection using COVID-19.

To propose a solution to the
Pneumonia problem, using a
novel artificial neural
network architecture. The
proposed novelty consists of
using dropouts on the
of the

network, tested on Kaggle

convolution part

medical images.

Quadtree decomposition is
applied

Recursively, before applying
SVM on the subimages and
ROIs identified by the model.
ROIs are used in regional
localization and can help in
interpreting predictions by
the SVM.

Study an SVM of machine
learning techniques used to
classify brain images. SVM
will be used in this paper to
analyse brain images and
discover Benign Tumor and
Malignant Tumor by using
the MATLAB software

This review is about the
SVMs

developed and applied in the

current state of

medical field over the
years.

Isic 2019
Dataset.

a dataset of
chest X-ray
radiography
(CXR) images

Kaggle: The lung
ray images taken
from Guangzhou
Women's  and
Children’s
Medical Center

Various
Datasets:
Diabetic
Retinopathy
Dataset, Covid X-
Ray, Covid CT

Scan, and
Alzheimer's
Benign Tumors

and the others
have Malignant
Tumors

Multi Res
Unet

CNN Model

VCG-16

SVM,
Quadtree,
ROI

svm

SVM-Based
Models

According to the
experimental findings, pre-
processing increases the
model training process's
precision and effectiveness.

CNN's preprocessed model
has a 94.5% accuracy rate,
98.4% sensitivity, and 98.0%
specificity, compared to
88.0% for the unprocessed
model.

The achieved result is that

the tested network

obtained the following
metrics: 97.2%
accuracy, 97.3% recall,

97.4% precision, and AUC %
0.982. and took first place in
the Kaggle competition.

The SVM model
identify the
interest  in mild  and

could
regions of
moderate demented
images, providing a correct
visual explanation.
Sensitivity analysis of the
SVM classifier in the model
supported the visual
with  high
accuracy on all the datasets.
The results of  the

conducted

explainability

experiments
showed the accuracy of the
system provided for the
classification of tumor types
(Benign, Malignant) found in
medical brain images.

The review highlights that
SVM-based
models have been effective

the various

in enhancing performance
metrics in healthcare

applications.
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[56] Proposed a new approachto WBC  Dataset, Resnet50  The proposed method
classify medical images by andX-Ray Possess 97.3% and 99%
using  transfer learning accuracy on WBC and
methods CoviID-19 datasets,
method, namely ResNet-50, respectively, which are
where features are reduced higher
by an Auto Encoder (AE) and
classified by
A Support Vector Machine
(SVM)

[56] Developed a hybrid CNN- CT Scan Image Cnn-svm This algorithm is evaluated,
SVM model for lung cancer Dataset and and the results indicate that
classification using CT scan Lung Dataset our proposed CNN-SVM
images. algorithm has succeeded in

classifying lung images with
97.91% accuracy.

[57] Hybrid Preprocessing and MRI brain CNN, SVM, Hibrid Model reaches an
classification approach of Dataset and Sobel Edge 5ccuracy of 98.14%

CNN and SVM. CNN for Tumor classified  Detection
Feature Extraction, while
SVM for Classification, and
reducing false positives.

[58] Proposed a hybrid approach MRI Public brain  CNN, SVM  Hybrid CNN-SVM accuracy:
combining CNN for feature |masges, and 98.4959%.
extraction and SVM for Tumor Comparisons: RELM -
classification. Included 94.233%, DCNN - 95%, DNN
threshold-based + DWA - 96%, kNN - 96.6%,
segmentation for tumor CNN - 97.5%.
detection.

[59] Aims to compare the Dataset of more SVM,CNN  SVM accuracy: 93% (small
traditional techniques of than 350 images dataset), 82% (augmented
SVM and Deep Learning CNN fjdocI)Iga’r, pizza, dataset).
in image classification, which sunflower, CNN accuracy: 93.57%.
involves data collection, soccer ball)

preprocessing,
implementation, and finally
evaluation.

4.2 Comparison of Al models
This study investigates and compares the effectiveness of various approaches across different

research topics, including Convolutional Neural Networks (CNN), Support Vector Machines (SVM),
and a combination of the two models. To investigate the basic ideas and methods of image
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classification and to demonstrate the value of deep learning methods, we evaluated most of these
techniques before deciding to use CNN and SVM.

By examining the fundamental ideas and methods of picture categorization and emphasizing the
learning strategies involved, we investigated the article. To be able to understand and build a
comprehensive understanding, we start with the CNN method, which excels in extracting image
hierarchy and spatial features from raw pixel data, but realizing the advantages, some shortcomings
must be addressed. CNN is reliable in data processing techniques but struggles in processing large
amounts of data (Khairandish et al., 2022a). In addition to determining the model's accuracy value,
this experiment gave us important insight into how combining two methods in a dataset might
enhance classification outcomes. This is especially useful for complex datasets like processing photos
and medical imaging. A comparison of the various models may be found below.

4.3 Medical Imaging

It is believed that clinical imaging assigns the sequence of operations that result in images of the
internal body parts. The process and cycles are used to capture images of the human body for clinical
applications, like identifying, evaluating, or assessing a pathology, injury, or deformity. The results of
computed tomography (CT) scans are excellent examples of useful indicative imaging that promotes
precise conclusions, mediation, and assessment of the harms and dysfunctions that real advisers
regularly handle [38]. The use of Al in medical imaging is demonstrated in Table 2.

Table 2.
Application of Al in medical imaging.
Journal Technique Application
[2], [14] CT Scan, MRI Image interpretation for cancer detection
[15] XAl Imaging analysis for tumour segmentation
[16] VGGNet Diabetic Retinopathy screening
[17] Deep Learning COVID-19 detection
[17], [20].[22] CAD Breast cancer diagnosis
[17] CNN, SVM Skin cancer diagnosis
[20] Machine Learning Grade of Glioblastoma prediction
[14] Deep Learning, CMR Hearts disease detection
[21] VLMs Radiology imaging interpretation

Whereas these changes might not necessarily be evident directly through conventional visual
assessment by human operators, artificial intelligence can review unusual imaging modalities like
cardiac magnetic resonance (CMR) and computed tomography (CT) scans for the detection of minute
changes with respect to early heart disease or complications [42].

5. Discussion and Results
5.1 Key Findings and Implications

The study emphasizes how artificial intelligence (Al), namely machine learning (ML) and deep
learning (DL), improves disease diagnosis, patient monitoring, and medical imaging. Among the
important conclusions are the following:

a) Al-Driven Medical Imaging: CNNs significantly improve the accuracy of disease detection,

particularly in tumor identification, pneumonia detection, and retinal diseases. Studies show
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b)

d)

that Al-assisted diagnosis reduces false positives and false negatives, leading to improved
diagnostic precision and clinician trust.

Disease Diagnosis Enhancement: The combination of CNNs and SVMs enhances classification
efficiency. For example, CNNs are effective in feature extraction from medical images, while
SVMs improve classification, particularly in cases requiring high-dimensional data processing.
Patient Monitoring with Al: Wearable health monitoring devices and loT-based solutions
enhance real-time patient monitoring. Al models efficiently analyze patient vitals, enabling
early detection of anomalies, thus improving personalized treatment strategies.

Improved Workflow Efficiency: Al integration streamlines medical processes by reducing the
time required for diagnosis and supporting clinical decision-making, thereby alleviating
clinician workload and enhancing patient care. These results suggest that Al could help close
the gap between accurate imaging, early diagnosis, and ongoing patient monitoring, resulting
in a more proactive and effective healthcare system.

5.2 Key Findings and Implications
Despite its advantages, Al in healthcare faces several challenges:

a)

b)

d)

Data Privacy and Security: Using sensitive health data raises patient privacy issues and
requires robust encryption along with healthcare compliance.

Interpretability of Al Models: Clinicians often struggle to trust Al decisions due to the “black
box” nature of deep learning models. Enhancing model explainability through heatmaps and
region-of-interest (ROI) visualization can improve adoption.

Data Heterogeneity: Al models must generalize well across diverse datasets. Variability in
imaging techniques, demographic differences, and annotation inconsistencies can impact
model performance.

Clinical Adoption Barriers: The integration of Al into existing healthcare infrastructure
demands significant investment in computational resources, staff training, and regulatory
approvals.

5.3 Comparison with Existing Literature
The result aligns with prior studies demonstrating Al’s impact on healthcare.

a)

b)

Medical Imaging Accuracy: Previous research, such as the Breast Screening-Al study, reported
a 27% reduction in false positives and a 4% reduction in false negatives, reinforcing the
findings of this study regarding Al’s ability to enhance diagnostic accuracy [14].

Hybrid Al Models: Earlier research on CNN-SVM integration confirmed the effectiveness of
combining feature extraction with classification to validate the role of SVMs in improving
explainability [45], [46].

Real-Time Monitoring: The effectiveness of Al in remote patient monitoring is corroborated
by Rohmetra’s work on Al-enabled telehealth, emphasizing the role of ML in detecting
anomalies in vital signs [9], [61].

This study adds to existing literature by highlighting the synergy between Al techniques in
diagnostics, monitoring, and imaging, demonstrating their combined effectiveness in advancing
precision medicine.

5.4 Limitation and Alternative Interpretation
While the findings are promising, certain limitations should be considered as follows:

a)

Dataset Bias: The generalizability of many Al models may be limited since they are trained on
particular datasets that might not be representative of other patient populations.
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b) Overfitting Concerns: Some models, particularly deep CNNs, may be overfit to training data,
requiring rigorous validation on external datasets.

c) Algorithmic Trade-offs: While CNNs excel in image processing, their computational demands
can be prohibitive. Alternative models such as vision transformers (ViTs) could offer improved
efficiency.

d) Ethical Considerations: Disparities in healthcare may be a result of bias in the Al models that
are caused by unbalanced training data, and hence there must be regular model audits and
fairness checks.

6. Conclusion

Artificial Intelligence (Al) has demonstrated significant potential in transforming, especially in the
areas of disease diagnosis, patient monitoring, and medical imaging. The integration of Al
technologies, such as Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs),
has led to remarkable improvements in diagnostic accuracy, efficiency, and personalized treatment
strategies. Al-driven systems have proven to be highly effective in analyzing complex medical data,
enabling early detection of diseases such as cancer, cardiovascular disorders, and neurological
conditions. Furthermore, Al-powered medical imaging has enhanced the precision of image analysis,
reduced diagnostic errors, and improved workflow efficiency in clinical settings.

Despite these advancements, the adoption of Al in healthcare is not without problem. One of the
main concerns is the lack of interpretability and transparency in Al models, which often function as
"black boxes." This makes it difficult for experts in the healthcare sector to truly trust and understand
the explanation behind the diagnosis provided by Al. In addition, privacy protection and data security
remain crucial issues, as Al systems require a large amount of sensitive patient data, making them
vulnerable to cyber threats. Ethical considerations, particularly regarding patient confidentiality and
equal access to Al-based health solutions, also need to be considered to ensure that these
technologies are used in a responsible manner.

The findings from this review show how important it is to create Al models that are easier to
understand and implement effective data protection procedures. Future research should focus on
developing Al systems that are capable of communicating with humans, where medical personnel
are not replaced by Al, but rather assisted by it. This approach ensures that Al complements clinical
expertise, maintaining a patient-centered and ethical healthcare framework. Moreover, efforts
should be made to bridge the gap in Al adoption between high-income countries and low- and
middle-income countries (LMICs), where access to advanced healthcare technologies is often limited
due to infrastructure and regulatory constraints.

In conclusion, Al holds immense promises for changing the way healthcare is delivered by
improving the accuracy of diagnosis, enabling direct patient monitoring, and enhancing the quality
of medical imaging. However, addressing the existing challenges related to model interpretability,
data security, and equitable access for successful integration of Al in clinical practice. As Al technology
continues to evolve, it is expected to make an increasingly significant contribution to shaping the
future of the healthcare system, ultimately improving patient outcomes and creating a more efficient
healthcare system. Continued research and collaboration between technologists, healthcare
providers, and policymakers will be necessary to realize the potential of Al in transforming global
healthcare.
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