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Integrating Artificial Intelligence (AI) into the healthcare system has made major 
progress for diagnosing disease, patient monitoring, and medical imaging, 
creating a highly interconnected ecosystem for improved medical decision-
making. AI-driven disease diagnosis utilizes machine learning models to analyze 
vast medical datasets, enabling quick and precise identification of diseases. This 
diagnostic capability is further enhanced by AI-powered medical imaging, where 
deep learning techniques, including convolutional neural networks (CNNs), refine 
image analysis, segmentation, and classification, providing critical support for 
precise diagnosis. Alongside these deep learning techniques, support vector 
machines (SVMs) offer strong classification powers that work especially well in 
situations requiring high-dimensional data processing with sparse training data. 
By combining CNNs for obtaining features and SVMs for categorizing, the 
advantages of both methods are combined to increase computational efficiency 
and diagnostic certainty. These AI-based insights are then reinforced through 
patient monitoring, where wearable sensors and IoT devices continuously track 
patient health, feeding real-time data into AI models that detect anomalies and 
predict disease progression. The synergy between these three areas ensures a 
continuous flow of medical information, enhancing predictive analytics and 
personalized treatment strategies. This review examines how powered system AI 
unifies disease diagnosis and patient monitoring using medical imaging into an 
integrated healthcare system, discussing current challenges such as data security, 
interpretability, and clinical adoption. The findings highlight AI's role in bridging 
diagnostic precision, real-time monitoring, and advanced imaging, paving the way 
for a more proactive and efficient healthcare framework. 
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1. Introduction    
 
The healthcare industry is currently facing complex and pressing challenges, including a rapidly 

increasing patient population, limited medical resources, and the demand to improve efficiency and 
accuracy in diagnosis and treatment. The increasing incidence of long-term diseases, such as cancer, 
diabetes, and cardiovascular disorders, has placed an enormous burden on healthcare providers, 
often resulting in delayed diagnosis, misdiagnoses, and suboptimal treatment strategies. These 
challenges are exacerbated due to the overwhelming amount and intricacy of medical data, which 
include electronic health records (EHRs), laboratory test results, genetic profiles, and medical imaging 
including X-rays, Computed Tomography (CT) scans, and MRIs. Healthcare professionals must analyze 
and interpret these diverse datasets to make informed clinical judgements, yet the increasing 
workload and demand for precision make traditional diagnostic methods inefficient [1]. 

For instance, in disease diagnosis, physicians rely on imaging techniques such as radiology and 
pathology, which require highly trained specialists to examine images manually. However, human 
mistakes, time constraints, and disparities in knowledge may lead to varying interpretations. leading 
to misdiagnoses or delayed treatments [2]. Similarly, in patient monitoring, it is necessary to 
continuously assess vital indicators such as heart rate, blood pressure, and glucose levels, especially 
for high-risk patients. However, conventional monitoring systems often fail to provide real-time 
insights or predictive analysis to anticipate possible complications before they become serious [3]. 

Considering these difficulties, artificial intelligence (AI) has emerged as a game-changing medical 
technology. AI offers solutions that can automate complex data analysis, improving diagnostic 
accuracy, developing treatment planning, and supporting real-time patient monitoring are important 
steps in the medical world [4].  One of the most successful applications of artificial intelligence is seen 
in the field of medical imaging. This is where deep learning models, especially convolutional neural 
networks (CNNs), have shown remarkable capabilities in detecting tumors, fractures, and 
cardiovascular abnormalities with a level of precision comparable to or even exceeding that of human 
radiologists [5]. For example, AI-based imaging systems have been utilized to detect retinal illnesses 
in ophthalmology and identify lung cancer nodules on CT scans, greatly increasing the early detection 
rate [6]. 

Beyond imaging, AI has also revolutionized clinical decision support systems (CDSS) by integrating 
EHRs, genetic data, and predictive analytics to assist doctors in personalizing treatment plans and 
assessing disease risks [7]. In precision medicine, AI helps analyze genetic mutations to determine 
the most effective therapy for individual patients, thereby reducing trial-and-error treatment 
approaches and improving patient outcomes [8]. AI-powered wearable devices and Internet of Things 
(IoT) monitoring systems further enable real-time tracking of vital signs, early detection of anomalies, 
and predictive alerts for medical emergencies, reducing hospital readmissions and improving chronic 
disease management [9]. 

Despite its vast potential, the adoption of artificial intelligence (AI) in healthcare is certainly not 
without its challenges. One of the main concerns is the lack of interpretability and transparency in AI 
models. Many deep learning algorithms operate as black boxes, which makes it difficult for 
healthcare professionals to understand the basis of AI-generated diagnoses. In addition, the issue of 
data privacy and security is also a very important concern. Given that AI relies on large volumes of 
sensitive patient information, making it susceptible to cyber threats and ethical concerns regarding 
patient confidentiality [10]. Moreover, disparities in AI adoption persist, especially in low- and 
middle-income countries (LMICs), where access to AI-driven healthcare innovations is limited due to 
insufficient infrastructure, regulatory constraints, and a shortage of AI expertise [11]. 
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To fully realize AI’s potential in healthcare, it is crucial to address these challenges through 
enhanced model transparency, strong data security protocol, and the development of ethical AI 
frameworks. Future research should focus on human-in-the-loop AI systems, in which AI serves as an 
assistive tool rather than a replacement for medical professionals, ensuring that AI complements 
clinical expertise while maintaining a patient-centered and ethical healthcare approach [12]. 

This objective of the paper to explore the growing role of AI in the healthcare sector. analyzing 
its applications, benefits, and challenges while emphasizing the importance of ethical AI 
implementation, regulatory policies, and equal access to artificial intelligence-based healthcare 
solutions. By advancing research in AI-assisted diagnostics, treatment planning, and real-time 
monitoring, healthcare systems can move toward a more efficient, accurate and customized 
approach to patient care. 

The following section discusses relevant studies in the topic of (AI) in healthcare and examples of 
its application. Section 3 discusses the methodology used in medical imaging. Especially, we 
evaluated and compared research methods, algorithms, and datasets from other researchers that 
address key performance indicators, for example sensitivity, accuracy specificity, and AUC-ROC in 
medical imaging, disease diagnosis, and patient monitoring in Sec. 4. Based on the experimental 
results and analyses that have been carried out using various algorithms, Sec. 5 discusses the key 
findings, their implications, and the challenges associated with AI applications in healthcare. Building 
on the findings and discussions from previous sections, Sec. 6 presents the conclusions drawn from 
the study and explores future directions for AI applications in healthcare. Finally, Sec. 7 outlines the 
key mathematical formulations and equations that underpin the development and evaluation of the 
AI models discussed in this study. 
 
2. Related Works 
2.1 Medical Imaging 
 

Medical imaging has been significantly altered by the integration of Artificial Intelligence (AI) and 
Machine Learning (ML). Several studies have demonstrated how AI improves diagnostic accuracy, 
speeds up analysis, and enhances decision-making in radiology and other medical fields. 

 
Fig 1. Visualizations showcasing segmentation examples for various cancers and medical imaging modalities, while the 
performance distribution is illustrated through box plots and podium plots that highlight the median, percentiles, and 

frequency of ranks achieved by different methods [13]. 

 
Medical imaging research has significantly advanced with the integration of artificial intelligence 

(AI) to enhance diagnostic accuracy and clinical efficiency. The Breast Screening-AI study by [14] 
evaluates the impact of AI-assisted diagnosis in breast cancer screening by comparing two scenarios: 
Clinician-Only and Clinician-AI. The findings demonstrate that incorporating AI reduces diagnostic 
errors, with a 27% decrease in false positives and a 4% reduction in false negatives. Additionally, AI 
integration improves workflow efficiency, reducing diagnosis time by an average of three minutes 



Knowledge and Decision Systems with Applications 

Volume 1, (2025) 270-294 

273 
 
 
 

per patient, while 91% of clinicians reported increased contentment and having more faith in the 
system . Beyond accuracy, the study emphasizes the importance of explainability in AI-driven 
diagnostics. By providing visual explanations through heatmaps, the system enhances clinicians' 
understanding and trust in AI-generated recommendations. This highlights the need for AI  model 
that is not only accurate, but also easy to use and transparent. The Breast Screening-AI framework 
demonstrate effective ways to integrate AI into clinical work processes, offering a valuable tool to 
support medical decision-making in real-world healthcare environments[15]. In addition to 
improving diagnostic accuracy, the integration of AI in medical imaging also fosters collaboration 
between clinicians and technology. By streamlining workflows and providing actionable insights. AI 
tools empower healthcare professionals to focus more on patient care rather than administrative 
tasks. AI continues to evolve, supporting clinical teams and will likely expand, opens up opportunities 
for more personalised and effective healthcare solutions. 
 
2.2 Disease Diagnosis 
 

Diagnosis is generally organized into a structured process that aims to identify medical conditions 
based on clinical findings [16]. The process includes symptom assessment as the initial stage, physical 
examination of the patient, which is the doctor's action to assess symptoms from physical signs. If 
necessary or require further studies are required, including laboratory tests and imaging studies. 
Other diagnostic assessments can be done by reviewing both personal and family medical history, as 
well as the clinical reasoning of the doctor to reach a diagnosis [17]. AI and machine learning help to 
improve this with their ability to process and analyze big data to produce accurate diagnoses [18]. AI 
plays an important role in medical imaging by providing a detailed view of the body with tools. For 
instance, during the Corona Virus Disease (COVID-19) pandemic—first identified in Wuhan and now 
a global health threat—the primary diagnostic method relies on RT-PCR (Real Time Polymerase Chain 
Reaction) tests, using nasopharyngeal swabs to detect severe acute respiratory syndrome-related 
coronavirus (SARS-CoV-2)-specific genes [19]. While traditional techniques like RT-PCR [20]remain 
foundational, AI supports diagnostics by interpreting imaging results , predicting disease spread, or 
optimizing test result analysis [21]. This integration of technology exemplifies how AI complements 
conventional methods to advance precision and efficiency in modern healthcare. AI is able to 
prioritise the need for ventilators and respiratory support in intensive care units by analysing data 
obtained from clinical parameters. This can provide crucial information that supports more informed 
resource allocation and decision-making [22]. Using Chest X Ray (CXR) and Computed Tomography 
(CT) images, AI was utilized to detect and quantify COVID-19. AI can also be utilized to provide daily 
updates, perform storage and trend analysis., as well as to monitor the course of treatment and 
forecast the likelihood of recovery or mortality in COVID-19 [23]. 

 
2.3 Patient Monitoring 

 
Remote patient monitoring (RPM) is a growing field in healthcare. This innovation is designed to 

provide support for doctors in providing care in various medical rooms as well as general surgery. 
RPM utilises flexible materials for sensors that can serve to efficiently expand patient monitoring 
capabilities[9]. As a result of the COVID-19 pandemic, telehealth became a common strategy for 
maintaining patients' and clinicians' safety [23]. Machine learning and image processing techniques 
played a vital role in telehealth monitoring. The AI methods are capable of monitoring patients vital 
signs such as heart rate, respiratory rate, oxygen saturation (SpO2), cough analysis, and blood 
pressure. Rohmetra surveyed AI-powered telehealth monitoring of vital signs has demonstrated 
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advantages over traditional methods. Utilising image and video processing techniques in machine 
learning (ML), the system is able to identify regions of interest (ROI) on patients, such as facial 
features, and then focus on these areas to estimate vital signs, including heart rate and respiratory 
rate. Developing deep learning models, specifically convolutional neural networks (CNN), capable of 
recognising individuals' psychological stress levels[13], [24]. Patient monitoring techniques via 
telehealth have great potential in diagnosing patients' health conditions. By utilising AI telehealth 
monitoring can be a more effective approach in classifying or predicting patients' vital signs  [9]. In 
hospitals, medical staff routinely monitor patients' health conditions and document them manually. 
The collection of patient vital signs is done manually and is influenced by various factors, including 
clinical workload, staff working hours, patient diagnosis, clinical leadership, and applicable national 
guidelines [1] and was limited due to the lack of resources. Monitoring patients has traditionally been 
done using invasive devices that require direct skin contact to assess their vital signs. However, 
technological advancements in data transmission have changed the landscape of the healthcare 
industry, bringing non-invasive devices that do not need to touch the patient's body, allowing for 
continuous monitoring. These innovations have revolutionised the way we traditionally monitor 
patient health, giving patients the opportunity to monitor their health conditions remotely, whether 
in a hospital, care facility or in their own homes[25]. In this section, we will discuss the Remote Patient 
Monitoring (RPM) architecture that supports these technologies [26]. 

 
2.4 Convolutional Neural Network 

 
Convolutional neural networks (CNNs) are extremely useful for diagnosing diseases from medical 

pictures like MRIs and X-rays because oftheir remarkable capacity to manage image data [1]. 
Convolutional neural networks (CNNs) and data mining methods are used in deep learning to add 
layers that aid in finding patterns in the data. deep learning models created especially for handling 
structured grid data, such as pictures [27]. CNNs extract information and develop complex 
representations from high-dimensional data by combining convolutional, pooling, and fully 
connected layers [28]. CNN, also referred to as ConvNet, is a popular kind of Artificial Neural Network 
(ANN) that is categorized as a supervised technique. This approach is renowned for its capacity to 
identify and decipher patterns. CNN is helpful for image analysis, where multiple techniques are 
employed to construct one image, because of its ability to recognize patterns [29]. These parameters 
include radiation absorption in X-ray imaging, sound pressure in ultrasound, and high frequency 
signal capacity in an MRI [30]. While several measurements are gathered for multichannel imaging, 
each pixel in a digital image is determined by a single measurement. Diagnostic images are created 
using a range of imaging modalities, such as computed tomography (CT), X-ray, magnetic resonance 
imaging, and functional magnetic resonance imaging (MRI and fMRI). positron emission tomography, 
Image classification, segmentation, rsynthesis, and regression are common DL applications with 
medical imaging [31]. Many medical diseases require medical imaging for diagnosis and monitoring, 
and the interpretation of these pictures has historically depended significantly on the knowledge of 
radiologists and other medical experts, which can be laborious and prone to human mistake [32]. 
CNNs excel at this role by automatically distinguishing organs or lesions from surrounding tissues in 
images, allowing surgeons to plan and perform surgeries more precisely. CNNs have proven effective 
in the diagnosis and detection of a wide range of illnesses, such as neurological disorders, pneumonia, 
and other lung conditions, and cancer [33]. Popular CNN designs include VGGNet, ResNet, and 
Inception 9. Formula (1) defines the convolution process between two functions. F and G: 

 
 



Knowledge and Decision Systems with Applications 

Volume 1, (2025) 270-294 

275 
 
 
 

(𝑓 ∗ 𝑔 ) (𝑡)  ≝  ∫
∞

−∞

𝑓(𝜏)𝑔(𝑡 −  𝜏)𝑑𝜏  

The following are the variables and symbols used:  

● (𝑓 ∗ 𝑔 ) (𝑡) : This shows how functions f and g are convolutional at point t.  

● 𝑓(𝜏)  : This is a convolved function. 

● 𝑔(𝑡 −  𝜏) : The second convolved function, with a shift of  

● 𝑡 : The variable used to evaluate the convolution result: 

● 𝜏 : The integral's integration variable, which would indicate a possible change in the 

function g. 
Formula (1) shows how shifting g across f alters the function g's influence on f. This process sheds light on 

the interactions and effects between these functions [34]. 

 

2.5 Support Vector Machine 
 

Because of their capacity to represent intricate relationships between inputs and outputs, 
Support Vector Machines (SVMs) have grown in popularity in scientific image analysis [35]. SVMs are 
of exceptional quality because of their greater performance overall and their capacity to handle non-
linear data in over-dimensional information units [31]. In clinical image analysis, SVMs are used in 
various packages, including tumor detection in magnetic resonance imaging (MRI) and lesion 
classification in computed tomography (CT). SVM is a machine learning tool that uses the concept of 
data classification as its foundation. To classify the data, it builds an N-dimensional hyperplane that 
divides it into two groups as efficiently as possible, linear and non-linear [35]. The dot product is the 
default kernel function, which transfers the training data into a kernel space. For non-linear cases, 
SVM uses a kernel function that plays a role in mapping the data into different spaces, thus allowing 
the separation of data even with very complex boundaries [36]. 

  
3. Methodology 

This study employs a comprehensive approach to explore the application of AI in healthcare, 
especially focuses on its important role in diagnostics, treatment planning, and real-time patient 
monitoring. The methodology used is composed of several key components, such as data collection, 
algorithm selection, experimental design, and analysis. Our research flow can be seen at Figure 2.  
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Fig 2. Research workflow. 

 
The diagram on Figure 2 illustrates the utilization of Artificial Intelligence (AI) in healthcare by 

highlighting its applications, methods, and types of data involved. AI is applied in three major areas: 
medical imaging, disease diagnosis, and patient monitoring. These applications are supported by 
various AI methods, including traditional machine learning algorithms such as Support Vector 
Machines and Random Forests, as well as deep learning models like Convolutional Neural Networks 
(CNNs), ResNet, VGG-16, and VGGNet. Additionally, Explainable AI (XAI) plays a role in ensuring 
interpretability and transparency of the models. The effectiveness of these methods depends on the 
diverse healthcare data they process, which includes electronic health records (EHRs), laboratory test 
results, genetic profiles, and medical imaging data such as X-rays, CT scans, and MRIs. Overall, this 
framework emphasizes how AI integrates applications, methods, and data sources to advance 
healthcare, while also pointing to the need for continued review, addressing challenges, and 
exploring future research directions. 

 
3.1 Data Collection 

We explored a range of datasets covering some medical fields to study the impact of AI in 
healthcare. 

 
3.1.1 Medical Imaging Data 

In the field of medical imaging, open-access datasets with annotated images are very important, 
especially for diseases of the retina and lung cancer. For instance, datasets featuring lung cancer 
nodules derived from CT scans provide a wealth of information that deep learning models can use as 
training data. These images are meticulously labeled to indicate the presence of nodules, which 
allows researchers and developers to create algorithms that can accurately identify and classify these 
potentially malignant growths. 
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Fig 3. Representative images and segmentation results of nodules. (a, b, c) A 52-year-

old male with low-risk lung adenocarcinoma. (d, e, f) A 56-year-old female with high-

risk lung adenocarcinoma. For the radiomic model, the threshold values for predicting 

high-risk lung cancer were 0.387, and for the radiographic model, the values were 

0.364 [11].  

 

The significance of these datasets extends beyond mere image collection. They are foundational 

for deep learning model training and validation, with a focus on Convolutional Neural Networks 

(CNNs). CNNs can automatically learn hierarchical features from raw pixel data, which makes them 

particularly ideal for image analysis. Various architectures of CNNs have been developed to enhance 

performance in medical imaging tasks. For example, ResNet (Residual Network) introduces skip 

connections that allow gradients to flow more easily during training, enabling the construction of 

very deep networks without suffering from the vanishing gradient problem. This architecture has 

been widely adopted for tasks such as lung nodule detection, where depth and feature extraction 

are crucial. As shown in Figure 4, the architecture of the FA-ResNet and the FA-Res module proposed 

by [12] further builds upon this foundation to improve accuracy and robustness in medical imaging 

applications. 

 
Fig 4. Architecture of the FA-ResNet (top) and FA-Res’s module (bottom) [12] 

 

 
EfficientNet is another notable architecture that optimizes the balance between network width, 

depth, and resolution. In order to achieve great performance with fewer parameters, EfficientNet 
employs an effective scaling technique that balances the model's depth, width, and resolution. This 
makes it ideal for classifying medical images, such as identifying retinal disorders. Because of its high 



Knowledge and Decision Systems with Applications 

Volume 1, (2025) 270-294 

278 
 
 
 

efficiency, it runs and trains more quickly, which is crucial in clinical settings where every second 
counts. As illustrated in Figure 5, the general workflow of the proposed method based on EfficientNet 
[37] highlights the streamlined and scalable approach that underpins its effectiveness in medical 
image analysis. 

 

 
Fig 5. The general workflow of the proposed method, Efficient Net [37].  

 
Medical imaging also uses conventional machine learning methods such as Support Vector 

Machines (SVM) in addition to CNNs. For classification jobs where the dataset is smaller or when the 
features have been extracted using CNNs, SVMs are especially beneficial. SVMs can efficiently classify 
images based on the features learned from the annotated datasets by locating the best hyperplane 
separating several classes in the feature space.  

Because it directly influences how well AI-driven diagnostic tools operate in clinical environments, 
this training and validation approach is essential to improve patient outcomes. Combining modern 
CNN architectures with conventional machine learning techniques such as SVMs offers a strong 
framework for addressing difficult medical imaging problems, therefore opening the door for creative 
healthcare solutions. 

The healthcare industry is currently facing complex and pressing challenges, including a rapidly 
increasing patient population, limited medical resources, and the demand to improve efficiency and 
accuracy in diagnosis and treatment. The increasing incidence of long-term diseases, such as cancer, 
diabetes, and cardiovascular disorders, has placed an enormous burden on healthcare providers, 
often resulting in delayed diagnosis, misdiagnoses, and suboptimal treatment strategies. These 
challenges are exacerbated due to the overwhelming amount and intricacy of medical data, which 
include electronic health records (EHRs), laboratory test results, genetic profiles, and medical imaging 
including X-rays, Computed Tomography (CT) scans, and MRIs. Healthcare professionals must analyze 
and interpret these diverse datasets to make informed clinical judgements, yet the increasing 
workload and demand for precision make traditional diagnostic methods inefficient. 

For instance, in disease diagnosis, physicians rely on imaging techniques such as radiology and 
pathology, which require highly trained specialists to examine images manually. However, human 
mistakes, time constraints, and disparities in knowledge may lead to varying interpretations. leading 
to misdiagnoses or delayed treatments [2]. Similarly, in patient monitoring, it is necessary to 
continuously assess vital indicators such as heart rate, blood pressure, and glucose levels, especially 
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for high-risk patients. However, conventional monitoring systems often fail to provide real-time 
insights or predictive analysis to anticipate possible complications before they become serious [3]. 

Considering these difficulties, artificial intelligence (AI) has emerged as a game-changing medical 
technology. AI offers solutions that can automate complex data analysis, improving diagnostic 
accuracy, developing treatment planning, and supporting real-time patient monitoring are important 
steps in the medical world [38].  One of the most successful applications of artificial intelligence is 
seen in the field of medical imaging. This is where deep learning models, especially convolutional 
neural networks (CNNs), have shown remarkable capabilities in detecting tumors, fractures, and 
cardiovascular abnormalities with a level of precision comparable to or even exceeding that of human 
radiologists [39]. For example, AI-based imaging systems have been utilized to detect retinal illnesses 
in ophthalmology and identify lung cancer nodules on CT scans, greatly increasing the early detection 
rate [6]. 

Beyond imaging, AI has also revolutionized clinical decision support systems (CDSS) by integrating 
EHRs, genetic data, and predictive analytics to assist doctors in personalizing treatment plans and 
assessing disease risks [7]. In precision medicine, AI helps analyze genetic mutations to determine 
the most effective therapy for individual patients, thereby reducing trial-and-error treatment 
approaches and improving patient outcomes [8]. AI-powered wearable devices and Internet of Things 
(IoT) monitoring systems further enable real-time tracking of vital signs, early detection of anomalies, 
and predictive alerts for medical emergencies, reducing hospital readmissions and improving chronic 
disease management [9]. 

Despite its vast potential, the adoption of artificial intelligence (AI) in healthcare is certainly not 
without its challenges. One of the main concerns is the lack of interpretability and transparency in AI 
models. Many deep learning algorithms operate as black boxes, which makes it difficult for 
healthcare professionals to understand the basis of AI-generated diagnoses. In addition, the issue of 
data privacy and security is also a very important concern. Given that AI relies on large volumes of 
sensitive patient information, making it susceptible to cyber threats and ethical concerns regarding 
patient confidentiality [13]. Moreover, disparities in AI adoption persist, especially in low- and 
middle-income countries (LMICs), where access to AI-driven healthcare innovations is limited due to 
insufficient infrastructure, regulatory constraints, and a shortage of AI expertise [40], [41]. 

To fully realize AI’s potential in healthcare, it is crucial to address these challenges through 
enhanced model transparency, strong data security protocol, and the development of ethical AI 
frameworks. Future research should focus on human-in-the-loop AI systems, in which AI serves as an 
assistive tool rather than a replacement for medical professionals, ensuring that AI complements 
clinical expertise while maintaining a patient-centered and ethical healthcare approach [12]. 

This objective of the paper to explore the growing role of AI in the healthcare sector. analyzing 
its applications, benefits, and challenges while emphasizing the importance of ethical AI 
implementation, regulatory policies, and equal access to artificial intelligence-based healthcare 
solutions. By advancing research in AI-assisted diagnostics, treatment planning, and real-time 
monitoring, healthcare systems can move toward a more efficient, accurate and customized 
approach to patient care. 

The following section discusses relevant studies in the topic of (AI) in healthcare and examples of 
its application. Section 3 discusses the methodology used in medical imaging. Especially, we 
evaluated and compared research methods, algorithms, and datasets from other researchers that 
address key performance indicators, for example sensitivity, accuracy specificity, and AUC-ROC in 
medical imaging, disease diagnosis, and patient monitoring in Sec. 4. Based on the experimental 
results and analyses that have been carried out using various algorithms, Sec. 5 discusses the key 
findings, their implications, and the challenges associated with AI applications in healthcare. Building 
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on the findings and discussions from previous sections, Sec. 6 presents the conclusions drawn from 
the study and explores future directions for AI applications in healthcare. Finally, Sec. 7 outlines the 
key mathematical formulations and equations that underpin the development and evaluation of the 
AI models discussed in this study. 

 
3.1.2 Electronic Health Records (EHRs) 
 

Accessing de-identified Electronic Health Record (EHR) datasets is a crucial step in advancing 
healthcare research and improving patient care. These datasets typically include a wealth of 
information, such as patient demographics, which encompass age, gender, ethnicity, and 
socioeconomic status. Understanding these demographic factors is vital, as they can significantly 
influence health outcomes and treatment responses [9]. For instance, certain diseases may manifest 
differently across various demographic groups, and recognizing these differences can lead to more 
personalized and effective treatment plans. In addition to demographics, de-identified EHR datasets 
contain comprehensive medical histories of patients. This includes information about past illnesses, 
surgeries, medications, allergies, and family medical history. Such detailed records allow researchers 
and healthcare professionals to identify patterns and correlations that may not be immediately 
apparent. For example, analyzing the medical histories of patients [42] with similar conditions can 
help uncover risk factors or commonalities that could inform future treatment strategies. Moreover, 
treatment outcomes are a critical component of these datasets. This information reflects the 
effectiveness of various interventions and therapies, providing insights into what works best for 
specific patient populations. Researchers are able to build predictive models that predict how many 
different patients may react to specific treatments based on their individual traits and medical 
histories by analyzing treatment outcomes. In clinical settings, these models can be useful in helping 
healthcare professionals make well-informed decisions on patient care. A further significant benefit 
is the integration of this rich data into clinical decision support systems. These systems use cutting-
edge algorithms and machine learning methods to evaluate EHR data and give medical professionals 
advice in real time [1]. For example, based on a patient's medication history, a clinical decision 
support system may notify a doctor about possible drug interactions or suggest different treatment 
options based on the patient's medical history and demographics. In summary, accessing de-
identified EHR datasets that include patient demographics, medical history, and treatment outcomes 
is essential for developing predictive models and clinical decision support systems. This data not only 
enhances our understanding of patient populations but also empowers healthcare providers to 
deliver more personalized and effective care, ultimately leading to improved health outcomes [43]. 

 
3.1.3 Wearable Device Data 

In the medical field, data gathered from wearable health monitoring devices is becoming more 
and more important, especially for real-time vital sign tracking and its consequences for patient 
management. These gadgets, which include fitness trackers and smartwatches, continuously monitor 
vital signs, including blood pressure, oxygen saturation, and heart rate. Health care providers are able 
to quickly learn about a patient's health status thanks to this real-time data, letting them take prompt 
actions when needed. The continuous monitoring capability of wearables offers significant 
advantages over traditional methods, which often rely on periodic checkups. For example, sudden 
changes in vital signs, such as an elevated heart rate or decreased oxygen levels, can be detected 
immediately, prompting healthcare professionals to take action [40]. Additionally, integrating this 
data into electronic health records (EHRs) provides a comprehensive view of a patient's health 
history, allowing for better-informed clinical decisions. Beyond individual patient management, real-
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time vital sign tracking from wearables can improve population health outcomes. By aggregating data 
from multiple patients, healthcare organizations can identify trends that may indicate broader public 
health issues, such as an outbreak of illness. As technology advances, the integration of wearable 
data into healthcare systems is expected to play a crucial role in enhancing health outcomes and 
optimizing patient management strategies [9], [43]. 

 
3.2 Algorithm Selection 

 
Given the complexity of the datasets, several AI algorithms to evaluate performance in different 

healthcare applications 
 

3.2.1 Convolutional Neural Networks (CNNs) 
 

 
Fig 6. Steps for detection using CNN [44]. 

 

Convolutional neural networks are most frequently used for image processing tasks, particularly 

the identification of tumors in medical pictures. CNNs' ability to automatically extract features from 

images is perhaps their most alluring feature. This makes them ideal for understanding complex 

visual information. This is a great advantage of medical imaging since it gives the ability to identify 

minute patterns and anomalies that may indicate the existence of tumor or other disease conditions 

[45], [46].  

CNNs operate through a series of layers that process the input image in a hierarchical manner. 

The initial layers typically focus on detecting simple features such as edges and textures, while deeper 

layers progressively capture more complex patterns, such as shapes and specific structures within 
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the image. This hierarchical feature extraction is particularly beneficial in medical imaging, where the 

visual characteristics of tumors [46] can vary significantly based on their type, size, and location. For 

instance, a CNN trained on a dataset of mammograms [33] can learn to differentiate between benign 

and malignant masses by recognizing specific features associated with each [28]. 

The training process of CNNs involves using large, annotated datasets, which are essential for 

teaching the model to recognize and classify different types of tumors accurately. These datasets 

often include thousands of labeled images, allowing the CNN to learn from a diverse range of 

examples. As the model trains, it adjusts its internal parameters so that the gap between its outputs 

and the real labels decreases to make it progressively more accurate over time. It is this supervised 

learning that plays a crucial role in developing successful diagnostic tools that can assist oncologists 

and radiologists in making correct decisions regarding patient care [33], [43]. 

In summary, CNNs have become a building block in the analysis of medical images, particularly 

when it concerns tasks such as tumor detection. By virtue of their ability to automatically extract and 

learn image features, they have the capability of identifying complex patterns that may be indicative 

of several medical conditions. Through ongoing study and development, uses of CNNs in imaging 

medicine will no doubt extend far and wide in generating more effective and accurate diagnoses that 

can pave the way towards improved patient results [47]. 

 

3.2.2 Random Forest and Support Vector Machine (SVM) 
 

Random Forest and Support Vector Machines (SVM) are among the most popular machine 
learning algorithms in healthcare, especially when dealing with structured data from Electronic 
Health Records (EHRs). These algorithms have achieved great success in a range of predictive tasks, 
including patient outcome prediction, chronic disease risk prediction, and clinical decision support.  

An ensemble learning approach called Random Forest builds numerous decision trees and 
aggregates their results to improve forecast stability and accuracy [48]. Because it can manage non-
linear interactions, overfitting robustness, and the provision of feature importance scores that 
encourage clinical interpretability, it is well-suited to manage complicated medical datasets. 

SVM, on the other hand, is known for its effectiveness in high-dimensional data classification, 
such as genomic expressions and medical imaging. By applying kernel functions, SVMs can build non-
linear decision boundaries, making them useful for distinguishing between clinically similar but 
statistically distinct conditions [49] . 

The use of these algorithms in medical prediction systems is growing rapidly due to their high 
accuracy and robustness against outliers. Several studies have shown that Random Forest and SVM 
often outperform traditional methods in the early detection of diseases such as cancer, diabetes, and 
cardiovascular conditions [48], [50] 

 
3.3 Experimental Design 
3.3.1 Training and Validation 

To enable the model to learn from the data in a quick way, the models were trained on various 
subsets of the data. This is normally conducted in machine learning. A section of the data is provided 
to the model during training so that the model finds patterns and relationships. Still another set is 
utilized to make an approximation of how well the model performs. Since the model has never seen 
this validation data before it was trained, it is an asset for verifying how well the model performs 
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with new, unseen data. Overfitting, in which the model learns the training data but has difficulty 
learning anything new, can be avoided by maintaining separate training and validation data.  

We used methods like cross-validation to additionally increase the validity of the outcomes. Using 
a robust statistical technique called cross-validation, a model's performance is estimated by splitting 
the dataset into different subsets, or "folds." As is customary in k-fold cross-validation, the dataset is 
divided into k equal parts. The model is then trained on k-1 of these parts and validated on the 
remaining part. This process is repeated k times, with each fold serving as the validation set once. 
The final performance metric is usually the average of the results obtained from each of the k 
iterations. By its approach of validating the model through testing it across several subsets of data, it 
not only provides a broader critique of how well the model works but also avoids overfitting. Cross-
validation allows the model to work across varied portions of a dataset, something that comes in 
handy if the data turn out to be limited or biased. All else being equal, learning on a subset of the 
dataset, applying a different validation set, and using cross-validation techniques help construct a 
stronger, more robust model that can be used effectively under real-world scenarios. 

 
3.3.2 Performance Metrics 
 

Performance of models is evaluated based on a variety of different metrics like area under 
receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, and accuracy. All the above 
parameters provide good information about the diagnostic potential of models, allowing scientists 
and doctors to know how well the models recognize and classify issues, such as medical malignancies.  

One of the simplest measures is accuracy, which is the proportion of actual outcomes (both true 
positives and true negatives) out of all of the cases that were analyzed. That is, it calculates how 
frequently the model predicted correctly. Although accuracy is a helpful metric, it may be deceptive, 
particularly if the data is unbalanced and one class (e.g., tumor patients) greatly outnumbers the 
other class (e.g., healthy patients). In this situation, a model can get high accuracy by always 
predicting the majority class, without necessarily being good at recognizing the minority class.  

Sensitivity, also known as recall or true positive rate, measures the model's ability to correctly 
identify positive cases, such as patients with tumors. It is calculated as the number of true positives 
divided by the sum of true positives and false negatives. A high sensitivity indicates that the model is 
effective at detecting the condition, which is particularly important in medical contexts where 
missing a diagnosis could have serious consequences. 

Specificity of the model is an important part; it is an estimate of how well the model will be 
capable of correctly classifying negative cases, or healthy patients. The ratio of true negatives and 
false positives is divided by the number of true negatives to estimate it. To avoid unnecessary alarms, 
which lead to undue worry and additional tests for healthy patients, high specificity is necessary.  

The other critical metric that gives a holistic view of how the model performs across different 
thresholds is the area under the receiver operating characteristic curve, or AUC-ROC. What the ROC 
curve actually does is it plots the true positive rate (sensitivity) versus the false positive rate (1 - 
specificity) at various threshold levels. The AUC quantifies the overall ability of the model to 
discriminate between positive and negative cases, with a value of 1 indicating perfect discrimination 
and a value of 0.5 suggesting no discrimination (equivalent to random guessing). A higher AUC value 
indicates a better-performing model. 

In summary, using a combination of metrics such as accuracy, sensitivity, specificity, and AUC-
ROC allows for a thorough assessment of the models' diagnostic capabilities. Each metric provides 
unique insights, and together they help to paint a complete picture of how well the models can 
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identify and classify medical conditions, ultimately guiding improvements in patient care and 
treatment outcomes. 

 
3.3.3 Real Time Monitoring Simulation 

 
Simulated real-time monitoring scenarios were created to evaluate the effectiveness of AI in 

providing timely alerts for potential health issues. These simulations are designed to mimic actual 
healthcare environments where continuous monitoring of patients is essential, particularly for those 
with chronic conditions or those at risk of sudden health changes. By creating these scenarios, 
researchers can assess how well AI systems can analyze incoming data from various health 
monitoring devices and determine whether they can accurately identify potential health problems 
before they escalate.  

In these simulated environments, data is generated in real-time, reflecting the types of vital signs 
and health metrics that would typically be collected from wearable devices, such as heart rate, blood 
pressure, oxygen saturation, and even glucose levels. The AI algorithms are then tasked with 
processing this data as it comes in, looking for patterns or anomalies that may indicate health issues. 
For example, if a patient's heart rate suddenly spikes or drops significantly, the AI system should be 
able to recognize this change and generate an alert for healthcare providers to investigate further.  

The effectiveness of the AI system is evaluated based on several criteria. One key aspect is the 
timeliness of the alerts. The system must not only detect potential issues but also do so quickly 
enough to allow for prompt intervention. Delays in alerting healthcare providers can lead to 
worsening conditions or even life-threatening situations. Therefore, measuring the response time 
from the moment an anomaly is detected to when an alert is issued is crucial.  

Another important criterion is the accuracy of the alerts. The AI must minimize false positives—
alerts that indicate a problem when there is none—as these can lead to unnecessary anxiety for 
patients and additional strain on healthcare resources. Conversely, the system must also avoid false 
negatives, where a genuine health issue goes undetected. Both types of errors can have serious 
implications for patient safety and care.  

Additionally, the simulations can help assess the user interface and usability of the alert system. 
It is essential that healthcare providers can easily understand and act upon the alerts generated by 
AI. This includes evaluating how the alerts are presented, whether they are clear and actionable, and 
how they fit into the existing workflow of healthcare professionals.  

In summary, simulating real-time monitoring scenarios allows researchers to rigorously evaluate 
the effectiveness of AI in providing timely alerts for potential health issues. By analyzing the 
timeliness and accuracy of alerts, as well as the usability of the alert system, these simulations 
contribute to the development of AI technologies that can enhance patient care and improve health 
outcomes in real-world settings. 

 
3.4 Data Analysis 
3.4.1 Comparative Analysis 

The best methods for particular healthcare applications were determined by comparing the 
performance of several algorithms on a range of tasks. The accuracy and effectiveness of diagnostic 
instruments, treatment suggestions, and patient management systems can all be greatly impacted 
by the algorithm used, which makes this comparative analysis essential in the healthcare industry. 
Researchers can ascertain which approaches produce the greatest results for tasks like disease 
detection, patient risk assessment, and treatment outcome prediction by methodically analyzing a 
variety of algorithms.  
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Other algorithms from other classes of machine learning and artificial intelligence were chosen 
to compare here. These are deep learning-based models like Convolutional Neural Networks (CNNs) 
and Recurrent Neural Networks (RNNs) and more advanced methods like support vector machines 
(SVM), random forests, and more conventional statistical methods like logistic regression and 
decision trees. Since all algorithms harm the same way they benefit, it is necessary to evaluate the 
performance of the algorithm once implemented in certain healthcare tasks, for instance, predicting 
patient readmission or detecting tumors in medical images.  

Pretrained datasets that have been split into training and test sets and are representative of the 
healthcare issue being addressed are generally used in the comparison process. The performance of 
every algorithm is measured using performance metrics like accuracy, precision, recall, and F1 score, 
and robust conclusions are obtained using methods like cross-validation. Additionally, factors like 
computational efficiency and scalability are considered, as algorithms must be able to process large 
volumes of data in real time, especially in critical scenarios like emergency care. Ultimately, this 
comparative analysis contributes to the development of more accurate, efficient, and reliable tools 
that enhance patient care and improve health outcomes. 

 
3.4.2 Interpretability Assessment 

Investigating the interpretability of AI models is a vital component of their implementation in 
healthcare, particularly when it comes to understanding how these models arrive at their decisions. 
This analysis is particularly significant for Convolutional Neural Networks (CNNs) utilized in medical 
imaging and for models that rely on Electronic Health Records (EHRs). Interpretability refers to how 
well a human can comprehend the reasons behind a decision made by an AI model. In the healthcare 
industry, where choices have a significant impact on patient outcomes, it is essential to make sure AI 
systems can be understood in order to promote patient and healthcare provider trust.  

CNNs in medical imaging are frequently regarded as "black boxes" because they can analyze 
complex visual data and identify intricate patterns without offering clear explanations of how they 
arrive at specific predictions. For example, a CNN may be trained to identify tumors in radiological 
images, but it can be difficult to determine which aspects of the image contributed to a particular 
diagnosis. To tackle this challenge, researchers have created various methods to improve the 
interpretability of CNNs. Visualization techniques such as Grad-CAM (Gradient-weighted Class 
Activation Mapping), which highlight the areas of an image that had a major impact on the model's 
decision-making, are one popular method. By providing visual clarifications, these methods assist 
clinicians in grasping the reasoning behind the model's predictions, thereby boosting their confidence 
in AI-assisted diagnostics.  

Conversely, EHR-based models typically depend on structured data, including patient 
demographics, medical histories, and lab results, to forecast patient outcomes or treatment 
suggestions. The decision-making processes of these models can also be intricate, particularly when 
they involve multiple variables and their interactions. To improve interpretability in EHR-based 
models, techniques such as feature importance analysis and decision trees can be utilized. Feature 
importance analysis identifies which variables most significantly affect the model's predictions, 
enabling healthcare providers to recognize the key factors that influence patient outcomes. Decision 
trees, in contrast, offer a clearer depiction of the decision-making process by visually outlining the 
paths taken based on various input variables, making it easier for clinicians to understand the logic 
behind the model's recommendations.  

Moreover, assessing the interpretability of AI models, especially CNNs in medical imaging and 
EHR-based models, is important for knowing that healthcare professionals can rely on and utilize 
these technologies efficiently. By applying visualization techniques for CNNs and utilizing feature 
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importance analysis or decision trees for EHR-based models, researchers can shed light on the 
decision-making processes of these AI systems. This level of transparency not only builds trust among 
users but also enhances clinical decision-making, ultimately resulting in better patient care and 
outcomes. 

 
3.4.3 Ethical Considerations 

The ethical considerations surrounding data privacy, security, and fair access to AI technologies 
in healthcare are especially crucial in low- and middle-income countries (LMICs). Concerns about the 
privacy of data stem from the risk of sensitive health information being misused, which is often 
worsened by insufficient informed consent and differing cultural views on privacy. Additionally, 
security issues arise from inadequate infrastructure to safeguard health data, leaving it exposed to 
cyber threats and breaches, particularly in areas without strong regulatory frameworks. These 
challenges underscore the necessity for a holistic strategy to protect patient information and uphold 
public confidence in healthcare systems.  

Moreover, ensuring equitable access to AI technologies is a significant issue, as marginalized 
groups in LMICs encounter obstacles like poor internet connectivity and financial limitations, which 
can worsen existing health inequalities. To tackle these problems, it is vital to bolster regulations of 
data protection, improve cybersecurity practices, and encourage inclusive access to AI solutions. By 
focusing on these ethical aspects, healthcare systems can effectively utilize AI technologies to 
enhance health outcomes while honoring individual rights and promoting social equity. 

 
4. Evaluation and Comparison of AI Models in Healthcare 
4.1 Evaluation of Algorithm 
 

Medical imaging has revolutionized disease diagnosis and treatment planning through advanced 
computational techniques [40]. Convolutional Neural Networks (CNNs) have become the backbone 
of image-based diagnostics, excelling in tasks like tumor detection in radiology and retinal disease 
classification in ophthalmology [51]. Support Vector Machines (SVMs), though traditionally used in 
medical imaging for classification problems, often require handcrafted features, making them less 
adaptable compared to deep learning approaches [36].  

This review looks at several studies that use machine learning and deep learning algorithms for 
medical imaging, disease diagnosis, and patient monitoring to determine the usefulness of AI 
applications in healthcare. The evaluation is centered on essential performance indicators like 
accuracy, sensitivity, specificity, and AUC-ROC [52]. The various methods used by researchers, the 
algorithms used, and the performance results obtained are all reflected in this classification, which 
makes it pertinent. Table 1 describes the application of AI models in healthcare. 
 

 Table 1. 
 Application of AI models in healthcare. 

Research 
Topic 

Research Method Dataset Algorithm Result 

[18] To enhance CNN tumor 
identification, this work uses 
several preprocessing 
methods, including bilateral 
filtering, K-means clustering, 
and Gaussian smoothing. 

Brain MRI image 
dataset. 

Resnet Model evaluation based on 
accuracy metrics and the 
model's ability to highlight 
tumor areas. 
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[24] In this work, CNN's 
performance in classifying 
skin lesions with and without 
pretreatment Region of 
Interest (RoI) extraction is 
compared. 

Isic 2019 
Dataset. 

Multi Res 
Unet 

According to the 
experimental findings, pre-
processing increases the 
model training process's 
precision and effectiveness. 

[32] The use of pre-processing 
techniques such as histogram 
equalization and bilateral 
filtering to improve the 
accuracy of pneumonia 
detection using COVID-19. 

a dataset of 
chest X-ray 
radiography 
(CXR) images 

CNN Model CNN's preprocessed model 
has a 94.5% accuracy rate, 
98.4% sensitivity, and 98.0% 
specificity, compared to 
88.0% for the unprocessed 
model. 

[53]  To propose a solution to the 

Pneumonia problem, using a 

novel artificial neural 

network architecture. The 

proposed novelty consists of 

using dropouts on the 

convolution part of the 

network, tested on Kaggle 

medical images. 

 

Kaggle: The lung 
ray images taken 
from Guangzhou 
Women's and 
Children’s 
Medical Center 

VCG-16 The achieved result is that 

the tested network 

obtained the following 

metrics: 97.2% 

 accuracy, 97.3% recall, 
97.4% precision, and AUC ¼ 
0.982. and took first place in 
the Kaggle competition. 

[36] Quadtree decomposition is 

applied 

Recursively, before applying 

SVM on the subimages and 

ROIs identified by the model. 

ROIs are used in regional 

localization and can help in 

interpreting predictions by 

the SVM. 

Various 
Datasets: 
Diabetic 
Retinopathy 
Dataset, Covid X-
Ray, Covid CT 
Scan, and 
Alzheimer's 

 SVM, 
Quadtree, 
ROI 

The SVM model could 

identify the regions of 

interest in mild and 

moderate demented 

images, providing a correct 

visual explanation. 

Sensitivity analysis of the 

SVM classifier in the model 

supported the visual 

explainability with high 

accuracy on all the datasets. 

[54] Study an SVM of machine 

learning techniques used to 

classify brain images. SVM 

will be used in this paper to 

analyse brain images and 

discover Benign Tumor and 

Malignant Tumor by using 

the MATLAB software 

Benign Tumors 
and the others 
have Malignant 
Tumors 

svm The results of the 

experiments conducted 

showed the accuracy of the 

system provided for the 

classification of tumor types 

(Benign, Malignant) found in 

medical brain images. 

[55] This review is about the 

current state of SVMs 

developed and applied in the 

medical field over the 

 years. 

- SVM-Based 
Models 

The review highlights that 

the various SVM-based 

models have been effective 

in enhancing performance 

metrics in healthcare 

applications. 
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[56]  Proposed a new approach to 

classify medical images by 

using transfer learning 

methods 

method, namely ResNet-50, 

where features are reduced 

by an Auto Encoder (AE) and 

classified by 

A Support Vector Machine 

(SVM) 

WBC Dataset, 
and X-Ray 

Resnet 50 The proposed method 

Possess 97.3% and 99% 

accuracy on WBC and 

COVID-19 datasets, 

respectively, which are 

higher 

[56]  Developed a hybrid CNN-

SVM model for lung cancer 

classification using CT scan 

images. 

  

CT Scan Image 
Dataset and 
Lung Dataset 

Cnn-svm This algorithm is evaluated, 

and the results indicate that 

our proposed CNN-SVM 

algorithm has succeeded in 

classifying lung images with 

97.91% accuracy. 

[57]  Hybrid Preprocessing and 

classification approach of 

CNN and SVM. CNN for 

Feature Extraction, while 

SVM for Classification, and 

reducing false positives. 

MRI brain 
Dataset and 
Tumor classified 

CNN, SVM, 
Sobel Edge 
Detection 

Hibrid Model reaches an 

accuracy of 98.14% 

[58]  Proposed a hybrid approach 

combining CNN for feature 

extraction and SVM for 

classification. Included 

threshold-based 

segmentation for tumor 

detection. 

  

MRI Public brain 
Images, and 
Tumor 

CNN, SVM Hybrid CNN-SVM accuracy: 

98.4959%. 

Comparisons: RELM - 

94.233%, DCNN - 95%, DNN 

+ DWA - 96%, kNN - 96.6%, 

CNN - 97.5%. 

  

[59] Aims to compare the 

traditional techniques of 

SVM and Deep Learning CNN 

in image classification, which 

involves data collection, 

preprocessing, 

implementation, and finally 

evaluation. 

Dataset of more 
than 350 images 
(dog, pizza, 
dollar, 
sunflower, 
soccer ball) 

SVM, CNN SVM accuracy: 93% (small 

dataset), 82% (augmented 

dataset). 

CNN accuracy: 93.57%. 

  

 
4.2 Comparison of AI models 
 

This study investigates and compares the effectiveness of various approaches across different 
research topics, including Convolutional Neural Networks (CNN), Support Vector Machines (SVM), 
and a combination of the two models. To investigate the basic ideas and methods of image 
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classification and to demonstrate the value of deep learning methods, we evaluated most of these 
techniques before deciding to use CNN and SVM.  

By examining the fundamental ideas and methods of picture categorization and emphasizing the 
learning strategies involved, we investigated the article. To be able to understand and build a 
comprehensive understanding, we start with the CNN method, which excels in extracting image 
hierarchy and spatial features from raw pixel data, but realizing the advantages, some shortcomings 
must be addressed. CNN is reliable in data processing techniques but struggles in processing large 
amounts of data (Khairandish et al., 2022a). In addition to determining the model's accuracy value, 
this experiment gave us important insight into how combining two methods in a dataset might 
enhance classification outcomes. This is especially useful for complex datasets like processing photos 
and medical imaging. A comparison of the various models may be found below. 

 
4.3 Medical Imaging 
 

It is believed that clinical imaging assigns the sequence of operations that result in images of the 
internal body parts. The process and cycles are used to capture images of the human body for clinical 
applications, like identifying, evaluating, or assessing a pathology, injury, or deformity. The results of 
computed tomography (CT) scans are excellent examples of useful indicative imaging that promotes 
precise conclusions, mediation, and assessment of the harms and dysfunctions that real advisers 
regularly handle [38]. The use of AI in medical imaging is demonstrated in Table 2.  

 
         Table 2.  
         Application of AI in medical imaging. 

Journal Technique Application 

[2], [14] CT Scan, MRI Image interpretation for cancer detection 
[15] XAI Imaging analysis for tumour segmentation 
[16] VGGNet Diabetic Retinopathy screening 
[17] Deep Learning COVID-19 detection 
[17], [20]. [22] CAD Breast cancer diagnosis 
[17] CNN, SVM Skin cancer diagnosis 
[20] Machine Learning Grade of Glioblastoma prediction 
[14] Deep Learning, CMR Hearts disease detection 
[21] VLMs Radiology imaging interpretation 

 
Whereas these changes might not necessarily be evident directly through conventional visual 

assessment by human operators, artificial intelligence can review unusual imaging modalities like 
cardiac magnetic resonance (CMR) and computed tomography (CT) scans for the detection of minute 
changes with respect to early heart disease or complications [42]. 

 
5. Discussion and Results 
5.1 Key Findings and Implications 

 
The study emphasizes how artificial intelligence (AI), namely machine learning (ML) and deep 

learning (DL), improves disease diagnosis, patient monitoring, and medical imaging. Among the 
important conclusions are the following:  

a) AI-Driven Medical Imaging: CNNs significantly improve the accuracy of disease detection, 
particularly in tumor identification, pneumonia detection, and retinal diseases. Studies show 
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that AI-assisted diagnosis reduces false positives and false negatives, leading to improved 
diagnostic precision and clinician trust.  

b) Disease Diagnosis Enhancement: The combination of CNNs and SVMs enhances classification 
efficiency. For example, CNNs are effective in feature extraction from medical images, while 
SVMs improve classification, particularly in cases requiring high-dimensional data processing.  

c) Patient Monitoring with AI: Wearable health monitoring devices and IoT-based solutions 
enhance real-time patient monitoring. AI models efficiently analyze patient vitals, enabling 
early detection of anomalies, thus improving personalized treatment strategies.  

d) Improved Workflow Efficiency: AI integration streamlines medical processes by reducing the 
time required for diagnosis and supporting clinical decision-making, thereby alleviating 
clinician workload and enhancing patient care. These results suggest that AI could help close 
the gap between accurate imaging, early diagnosis, and ongoing patient monitoring, resulting 
in a more proactive and effective healthcare system. 
 

5.2 Key Findings and Implications 
Despite its advantages, AI in healthcare faces several challenges:  
a) Data Privacy and Security: Using sensitive health data raises patient privacy issues and 

requires robust encryption along with healthcare compliance.  
b) Interpretability of AI Models: Clinicians often struggle to trust AI decisions due to the “black 

box” nature of deep learning models. Enhancing model explainability through heatmaps and 
region-of-interest (ROI) visualization can improve adoption.  

c) Data Heterogeneity: AI models must generalize well across diverse datasets. Variability in 
imaging techniques, demographic differences, and annotation inconsistencies can impact 
model performance.  

d) Clinical Adoption Barriers: The integration of AI into existing healthcare infrastructure 
demands significant investment in computational resources, staff training, and regulatory 
approvals. 

 
5.3 Comparison with Existing Literature 

The result aligns with prior studies demonstrating AI’s impact on healthcare.  
a) Medical Imaging Accuracy: Previous research, such as the Breast Screening-AI study, reported 

a 27% reduction in false positives and a 4% reduction in false negatives, reinforcing the 
findings of this study regarding AI’s ability to enhance diagnostic accuracy [14].  

b) Hybrid AI Models: Earlier research on CNN-SVM integration confirmed the effectiveness of 
combining feature extraction with classification to validate the role of SVMs in improving 
explainability [45], [46].  

c) Real-Time Monitoring: The effectiveness of AI in remote patient monitoring is corroborated 
by Rohmetra’s work on AI-enabled telehealth, emphasizing the role of ML in detecting 
anomalies in vital signs [9], [61]. 

This study adds to existing literature by highlighting the synergy between AI techniques in 
diagnostics, monitoring, and imaging, demonstrating their combined effectiveness in advancing 
precision medicine. 

 
5.4 Limitation and Alternative Interpretation 

While the findings are promising, certain limitations should be considered as follows:  
a) Dataset Bias: The generalizability of many AI models may be limited since they are trained on 

particular datasets that might not be representative of other patient populations.  
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b) Overfitting Concerns: Some models, particularly deep CNNs, may be overfit to training data, 
requiring rigorous validation on external datasets.  

c) Algorithmic Trade-offs: While CNNs excel in image processing, their computational demands 
can be prohibitive. Alternative models such as vision transformers (ViTs) could offer improved 
efficiency.  

d) Ethical Considerations: Disparities in healthcare may be a result of bias in the AI models that 
are caused by unbalanced training data, and hence there must be regular model audits and 
fairness checks.  
 
 
 

6. Conclusion 
Artificial Intelligence (AI) has demonstrated significant potential in transforming, especially in the 

areas of disease diagnosis, patient monitoring, and medical imaging. The integration of AI 
technologies, such as Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs), 
has led to remarkable improvements in diagnostic accuracy, efficiency, and personalized treatment 
strategies. AI-driven systems have proven to be highly effective in analyzing complex medical data, 
enabling early detection of diseases such as cancer, cardiovascular disorders, and neurological 
conditions. Furthermore, AI-powered medical imaging has enhanced the precision of image analysis, 
reduced diagnostic errors, and improved workflow efficiency in clinical settings.  

Despite these advancements, the adoption of AI in healthcare is not without problem. One of the 
main concerns is the lack of interpretability and transparency in AI models, which often function as 
"black boxes." This makes it difficult for experts in the healthcare sector to truly trust and understand 
the explanation behind the diagnosis provided by AI. In addition, privacy protection and data security 
remain crucial issues, as AI systems require a large amount of sensitive patient data, making them 
vulnerable to cyber threats. Ethical considerations, particularly regarding patient confidentiality and 
equal access to AI-based health solutions, also need to be considered to ensure that these 
technologies are used in a responsible manner.  

The findings from this review show how important it is to create AI models that are easier to 
understand and implement effective data protection procedures. Future research should focus on 
developing AI systems that are capable of communicating with humans, where medical personnel 
are not replaced by AI, but rather assisted by it. This approach ensures that AI complements clinical 
expertise, maintaining a patient-centered and ethical healthcare framework. Moreover, efforts 
should be made to bridge the gap in AI adoption between high-income countries and low- and 
middle-income countries (LMICs), where access to advanced healthcare technologies is often limited 
due to infrastructure and regulatory constraints.  

In conclusion, AI holds immense promises for changing the way healthcare is delivered by 
improving the accuracy of diagnosis, enabling direct patient monitoring, and enhancing the quality 
of medical imaging. However, addressing the existing challenges related to model interpretability, 
data security, and equitable access for successful integration of AI in clinical practice. As AI technology 
continues to evolve, it is expected to make an increasingly significant contribution to shaping the 
future of the healthcare system, ultimately improving patient outcomes and creating a more efficient 
healthcare system. Continued research and collaboration between technologists, healthcare 
providers, and policymakers will be necessary to realize the potential of AI in transforming global 
healthcare. 
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