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The wheel bearing is a very important part of the car, because they help or 
supports rotation and reduces friction among moving parts. A detailed 
investigation and comparison of the many models used to detect faults or 
failures in wheel bearings, which are critical and complex techniques in 
rotating machines such as vehicles, turbines, industrial equi⋕ent, and motors. 
Four main faults are noticed in the wheel bearing, such as: outer race defects, 
cage defects, ball/roller defects, and inner race defects, but the most 
important are preventing catastrophic failures, reducing downtime and 
repair costs with enables predictive maintenance. The main theme of this 
study is to choose or develop a technique for engineers’ implementation of 
condition monitoring systems; therefore, first, we design the model of the 
linguistic bipolar fuzzy technique, then we evaluate the models of “power 
averaging technique” and “power geometric technique” for linguistic bipolar 
fuzzy models. Additionally, we also construct the model of the “multi-attribute 
border approximation area comparison” technique, which is used for the 
assessment of the fault detection techniques for wheel bearing in rotating 
machinery. Finally, we illustrate numerical examples to describe the 
comparative analysis between our ranking values and the ranking values of 
old models, to mention the advantages and disadvantages of all approaches. 

 
Keywords: Bipolar fuzzy logic; Decision-
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1. Introduction 
 

In a rotatory machine, the wheel bearing plays a fundamental role in the smooth operation. They 

always reduce the friction and allow all machine parts to rotate efficiently. When bearing faces any 

fault, then the overall machinery performance is very low.  We can identify these types of defects 

with the help of different machines. Fault-bearing always produces the heat and vibration that cause 

the power loss. If we ignore these fundamental problems, then we can face many challenges. Fault 

detection always gives priority and highly focuses on the identification of bearing problems at the 
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early stage with the help of advanced and common techniques. Early identification is always helpful 

to prevent major damage to any machine components. Early detection reduces the cost and saves 

time for the repair. Fault detection also enhances the system's reliability and operational safety. In 

modern days, many industry and smart manufacturing companies apply fault detection to ensure the 

safety against sudden failures. Many applications have been developed by different scholars because 

of their validity and effectiveness. For instance, Cao et al. [1] developed a bearing fault in trains based 

on an empirical wavelet transform. Shaikh et al. [2] investigated the train wheel defect detection. 

Nawrocki et al. [3] derived the assessment of wear in spindle bearings of machining centers. Yalcin 

[4] proposed the use of magnetic sensors for the evaluation of the fault detection in tire steel belts. 

Liu et al. [5] designed the axle box bearing with inner and outer rings. Pandiyan and Babu [6] 

presented the rolling-element bearing. Hossain et al. [7] evaluated the transform automotive 

maintenance of bearings. Shaikh et al. [8] determined the fault detection of bearings based on 

artificial intelligence. Gruber et al. [9] designed the condition monitoring algorithm for the valuation 

of bearing faults. Feng et al. [10] presented the fault-tolerant collaborative control. 

The decision-making process is widely used across multiple domains such as engineering, 

healthcare, information sciences, supply chain management, and sustainability for solving complex 

real-world decision-making problems. Most of the real-world decision-making problems contain 

multiple and conflicting criteria. In this context, the traditional decision-making approaches are 

limited in evaluating it effectively. To overcome this limitation, Zadeh [11] established the notation 

of fuzzy set (FS), which is an extension of the existing classical set. FS is an effective mathematical 

tool that accurately models ambiguity and vagueness in decision-making processes. Unlike the 

traditional classical set, FS assigns a partial membership function to each element of the set. The FS 

approach is highly effective for handling uncertain and imprecise expert information. This extension 

enables the decision-makers to effectively handle real-world decision-making problems. The FS 

approach is widely extended to different domains. Baser and Ulucay [12] constructed an extended 

notation using a fuzzy approach and discussed its properties and applications in detail. Kuntama et 

al. [13] constructed four novel ideas by integrating a fuzzy approach with IUP and explained their 

properties and applications in detail. Lin et al. [14] constructed a novel conceptual approach of social 

ecological technological systems based on fuzzy information. Vimala et al. [15] constructed an 

advanced MADM approach under an extended fuzzy domain for handling a real-world problem of 

robot selection. Jadhava et al. [16] established a novel solution approach for fuzzy sequential 

problems under a fuzzy domain. Castello-Sirvent [17] presented a detailed literature review on the 

articles published in the Journal Citation Report using fuzzy concepts. 

Although FS effectively handles complex and uncertain information using a membership function. 

However, most of the real-world problems contained both positive and negative aspects 

simultaneously. Such problems cannot be evaluated by using a single membership function. To 

overcome this limitation, Zhang [18] constructed a novel notation of bipolar fuzzy set (BPS). BPS is an 

extension of the traditional FS, and it involves two independent membership functions, such as 
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positive membership and negative membership. The positive membership function represents 

satisfaction, while the negative membership function represents dissatisfaction. The BPS framework 

enables the expert to express their judgements in an advanced form and can express support and 

opposition at the same time. The BPS approach is highly effective for situations involving conflicting 

opinion criteria. Because of it, the BPS gained increasing attention and was widely used across 

different domains. Gul [19] constructed a novel VIKOR approach under an extended bipolar fuzzy 

enviro≡ent for handling multi-criteria decision-making (MCDM) problems. Gul et al. [20] established 

an extended bipolar fuzzified approach under bipolar fuzzy preference relations and discussed its 

applications in a decision-making enviro≡ent. Dalkılıc and Demirtas [21] constructed a novel decision-

making algorithm under an extended bipolar domain for medical diagnosis. Alkouri et al. [22] 

developed multi attribute decision making approach under an extended bipolar fuzzy domain to find 

an optimal nutrition program. Ahmad et al. [23] constructed a novel decision-making approach under 

a generalized bipolar fuzzy enviro≡ent for sustainable energy solutions. Akram and Akmal [24] 

extended the application of BPS to the graph structural enviro≡ent. Zhang [25] presented a 

generalized bipolar fuzzy approach and fuzzy equilibrium relations for bipolar clustering, 

optimization, and global regularization. Akram and Dudek [26] invented a novel notation of regular 

and total regular graphs under a bipolar fuzzy enviro≡ent and discussed their basic properties in 

detail. Dalkılıc and Demirtas [27] used an extended bipolar fuzzy approach to handle a real-world 

problem of medical diagnosis. 

The BPS provides an advanced framework to represent complex and uncertain evaluations. 

However, in many real-world practical applications, experts express their preferences using natural 

language instead of a fixed numerical value. To model such information, Zadeh [28] invented the 

concept of linguistic set (LS). The LS framework provides an effective and structured way to model 

such qualitative expert information. The LS approach reduces information loss while preserving the 

real meaning of the expert information. This approach enhanced the decision-making approaches 

and improved interpretability. Because of this, it is widely applied in different enviro≡ents. Gou and 

Xu [29] constructed some basic operations for LS and extended FS based on linguistic information. 

Beg and Rashid [30] invented a novel TOPSIS (Technique for Order Preferences by Similarity to Ideal 

Solution) approach under an extended linguistic enviro≡ent for decision making. Rodriguez et al. [31] 

constructed a novel group decision-making approach based on generalized linguistic information for 

managing linguistic expressions. Wang et al. [32] revised the traditional idea of generalized linguistic 

approach and classified them according to their computational strategies. Sidnyaev et al. [33] 

invented statistical and linguistic decision-making approaches using fuzzy information. 

Based on these ideas, the scholars developed different evaluation approaches to evaluate and rank 

uncertain and subjective expert information. For example, Pamucar and Cirovic [34] invented a novel 

MABAC (Multi-Attributive Border Approximation Area Comparison) model for handling problems in 

logistic centers. He et al. [35] constructed some aggregation operators under an extended linguistic 

bipolar enviro≡ent and extend its applications to multi-criteria group decision making. Moslem [36] 

constructed a novel Best-Worst model under extended fuzzy information to investigate commuters' 
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travel mode choices. Moslem [37] constructed an analytic hierarchy process based on generalized 

fuzzy information for sustainable urban transport solutions. Badi et al. [38] invented a novel MADM 

model for advanced sustainable logistics and transport systems. Hussain and Ali [39] proposed an 

advanced decision-making approach under an extended fuzzy domain for critical estimation of 

ideological and political education. Nwokoro and Ejegwa [40] presented a detailed review on trends, 

gaps, and future work of an extended fuzzy notation and discussed its application in MCDM. Zafer 

and Asif [41] developed the N-structure to fuzzy graph, which is a valuable extension of fuzzy set 

theory. Zhou et al. [42] invented the artificial neural network based on modified fuzzy sets. Jia et al. 

[43] derived the coefficient bounds for q-calculus.  

The fuzzy and its extensions are widely applied across different fields for modeling uncertain and 

vague expert information. Despite their effectiveness, there are still some major research gaps in the 

current literature that need to be filled. The major research gaps are as follows: 

1) The current literature provides many effective frameworks that enable experts to express their 

judgements, but the linguistic bipolar fuzzy framework has not developed. 

2) The scholars invented many aggregation approaches, but the idea of a power aggregation 

operator based on a linguistic bipolar fuzzy framework has not constructed. 

3) The existing literature contained many MADM approaches, but the notation of the MABAC 

model based on linguistic bipolar fuzzy data is not established. 

4) Many hybrid ideas have been developed, but no one constructed such a framework that 

integrates power aggregation operators and the MABAC model in one frame. 

These major research gaps highly motivate this research work. Our target is to develop such 

advanced approaches that completely cover the above-mentioned research gaps. We aim to 

construct the following concepts. 

1) Our target is to construct a hybrid notation of linguistic bipolar fuzzy set by using the existing 

idea of FS, BFS, and LS. 

2) Our focus is to extend the existing notation of the power aggregation operators to a linguistic 

bipolar fuzzy enviro≡ent. 

3) We aim to generalize the current idea of the MABAC model and invent a novel MABAC 

approach under a linguistic bipolar fuzzy enviro≡ent. 

4) We also aim to combine the advanced notation of the power aggregation operators with the 

proposed MABAC model and apply it to a real-world problem. 

The linguistic bipolar fuzzy approach is highly effective for handling real-world decision-making 

problems. It enables the decision makers to model complex and uncertain expert judgements in a 

reliable way. The key advantages of this study are discussed as follows: 

1) The advanced linguistic bipolar fuzzy framework strengthens the decision-making approaches 

and enables the expert to express their preferences accurately. 
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2) The modified notation of power aggregation operators effective handle complex and 

uncertain expert judgements. 

3) The generalized MABAC model effectively evaluates and ranks alternatives based on multiple 

attributes under a complex and uncertain enviro≡ent. 

4) The structure of the extended MABAC approach is highly flexible and can easily be extended 

to different domains. 

The advanced linguistic bipolar fuzzy set (LBFS) integrates the strengths of many individual ideas, 

such as FS, BFS, and LS. The LBFS is a generalization of many ideas, such as FS, BFS, and LS, and all 

these ideas have now become the special cases of it. Similarly, the invented power aggregation 

operator and MABAC model is generalization of many existing concepts, such as arithmetic 

aggregation operators, geometric aggregation operators, power aggregation operators based on 

fuzzy data, MABAC model, MABAC model based on fuzzy information, and MABAC model based on 

bipolar fuzzy information, and all these ideas have now become special cases of this research work. 

In this article, our target is to invent the following ideas. 

1) To construct the notation of linguistic bipolar fuzzy set and discuss its basic properties. 

2) To develop a generalized idea of power aggregation operators based on linguistic bipolar fuzzy 

data. 

3) To invent an advanced notation of the MABAC model under a linguistic bipolar fuzzy 

enviro≡ent. 

4) To integrate the advanced idea of power aggregation operators with the MABAC model and 

apply it to a real-world problem. 

5) To compare the results of the proposed model with some related current models to check its 

reliability and accuracy. 

This research article is arranged in the following manner. In Section 2, we briefly reviewed the 

existing idea of BFS and discussed its fundamental properties. In Section 3, we explained the novel 

notation of linguistic bipolar fuzzy sets and discussed their basic operational laws. Further, we 

discussed our proposed aggregation operators. Additionally, we explained the modified MABAC 

model based on linguistic bipolar fuzzy data. In Section 4, we discussed a real-world problem and 

addressed it with the help of a numerical example. In Section 5, we compared the results of the 

proposed model with some current related ideas, and in Section 6, we put the concluding remarks. 

 
2. Preliminaries  
 

This section concentrates on the revision of the existing models of the BFS and their 

operational laws. Further, the idea of linguistic term sets is also discussed with some valuable results. 

Definition 1: [18] Let 𝑋 be a universe of discourse. The BFS W is stated and derived by: 
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W = {(𝓍,  ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)) | 𝓍 ∈ 𝑋} 

Where  ⏉∟ ⋕W(𝓍) ∈ [0, 1] represents the positive value and  ⏉∟ ≡W(𝓍) ∈ [−1, 0] 

represents the negative value of the truth function. The final version of the BFN is invented and 

represented by: W = ( ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)). 

Definition 2: [18] Let W = ( ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)) be any BFN. The model of the score 

system is developed and represented by: 

ƪSF(W) =
1

2
(1 +  ⏉∟ ⋕W(𝓍) +  ⏉∟ ≡W(𝓍)) ∈ [0, 1] 

Definition 3: [18] Let W = ( ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)) be any BFN. The model of the accuracy 

system is developed and represented by: 

𝔄AF(W) =
1

2
(1 +  ⏉∟ ⋕W(𝓍) −  ⏉∟ ≡W(𝓍)) ∈ [0, 1] 

Definition 4: [18] Let  W1 = ( ⏉∟ ⋕W1
(𝓍),  ⏉∟ ≡W1

(𝓍)) and W2 =

( ⏉∟ ⋕W2
(𝓍),  ⏉∟ ≡W2

(𝓍)), be any two BFNs. Then  

W1⨁W2 = ( ⏉∟ ⋕W1
+  ⏉∟ ⋕W2

−  ⏉∟ ⋕W1
 ⏉∟ ⋕W2

, − (( ⏉∟ ≡W1
). ( ⏉∟ ≡W2

))) 

W1⨂W2 = ((( ⏉∟ ⋕W1
). ( ⏉∟ ⋕W2

)) ,  ⏉∟ ≡W1
+  ⏉∟ ≡W2

+  ⏉∟ ≡W1
 ⏉∟ ≡W2

 ) 

𝜆W = (1 − (1 −  ⏉∟ ⋕W)
𝜆, −| ⏉∟ ≡W|

𝜆) 

W𝜆 = (( ⏉∟ ⋕W)
𝜆, −1 + (1 +  ⏉∟ ≡W)

𝜆) 

Definition 5: [28] Let  |  = { | I  |  I = 0,1, … , √} be a linguistic term set with specific 

cardinality. The above sets must simplify the following conditions:  

1) If  | I >  | j⟺ I > j. 

2) Neg( | I) =  | j Such that j = √−I. 

3) 𝑚𝑎𝑥( | I,  | j) =  | I⟺ I ≥ j. 

4) 𝑚𝑖𝑛( | I,  | j) =  | j⟺ I ≤ j. 

3. Assessment of MABAC Model Based on Linguistic Bipolar Fuzzy Power Strategies  
 

This section focuses on the valuation of the MABAC model based on the power aggregation 

operators for a novel model of linguistic bipolar fuzzy information. 
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3.1 LBC: Linguistic Bipolar Fuzzy Information 
 

This Section aims to develop the idea of LBFS and its basic and fundamental laws. 

Definition 6: Let 𝑋 be a universe of discourse. The LBFS W is stated and derived by: 

W = {(𝓍,  |  ⏉∟ ⋕W(𝓍),  |  ⏉∟ ≡W(𝓍)) | 𝓍 ∈ 𝑋} 

Where  ⏉∟ ⋕W(𝓍)  ∈ [0, √], (
 ⏉∟ ⋕W(𝓍)

√
∈ [0, 1]), represents the positive value and 

 ⏉∟ ≡W(𝓍) ∈ [−√, 0], (
 ⏉∟ ≡W(𝓍)

√
∈ [−1, 0]), represents the negative value of the truth function. 

Thus,  |  ⏉∟ ⋕W(𝓍) and  |  ⏉∟ ≡W(𝓍) are called positive and negative linguistic truth values. The final 

version of the LBFN is invented and represented by: W = ( |  ⏉∟ ⋕W(𝓍),  |  ⏉∟ ≡W(𝓍)). 

Definition 7: Let W1 = ( ⏉∟ ⋕W1
(𝓍),  ⏉∟ ≡W1

(𝓍)) and W2 = ( ⏉∟ ⋕W2
(𝓍),  ⏉∟ ≡W2

(𝓍)) 

be two LBFNs. Then 

W1⨁W2 = ( | 
√(
 ⏉∟ ⋕W1

√
+
 ⏉∟ ⋕W2

√
−
 ⏉∟ ⋕W1

√

 ⏉∟ ⋕W2
√

)
,  | 

− √(
( ⏉∟ ≡W1)

√
.
( ⏉∟ ≡W2)

√
)
) 

W1⨂W2 = ( | 
√(
( ⏉∟ ⋕W1)

√
.
( ⏉∟ ⋕W2)

√
)
,  | 

√(
 ⏉∟ ⋕W1

√
+
 ⏉∟ ⋕W2

√
+
 ⏉∟ ⋕W1

√

 ⏉∟ ⋕W2
√

) 
) 

𝜆W = ( | 
√(1−(1−

 ⏉∟ ⋕W
√

)
𝜆

)
,  | 

−√((|
 ⏉∟ ≡W
√

|)
𝜆

)
) 

W𝜆 = ( | 
√(
 ⏉∟ ⋕W
√

)
𝜆 ,  | 

√(−1+(1+
 ⏉∟ ≡W
√

)
𝜆

)
) 

Definition 8: Let W = ( ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)) be any LBFN. Then, the score value is 

invented and deliberated by: 

ƪSF(W) =
1

2
(
 ⏉∟ ⋕W(𝓍)

√
+
 ⏉∟ ≡W(𝓍)

√
) ∈ [−1, 1] 

Definition 9: Let W = ( ⏉∟ ⋕W(𝓍),  ⏉∟ ≡W(𝓍)) be any LBFN. Then, the accuracy value is 

invented and deliberated by: 

𝔄AF(W) =
1

2
(
 ⏉∟ ⋕W(𝓍)

√
−
 ⏉∟ ≡W(𝓍)

√
) ∈ [0, 1] 
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3.2 LBF Power Arithmetic Aggregation Operators 
 

In this section, we discuss the arithmetic operators for LBF information and also discuss their 

properties with the order arithmetic operator.  

Definition 10: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

The LBFPWAA operator is invented and deliberated by: 

LBFPWAA(W1,W2,W3, … ,W𝓃) = ⨁𝜅=1
𝓃 (Ξ𝜅W𝜅) = Ξ1W1⨁Ξ2W2⨁Ξ3W3⨁… ⨁Ξ𝓃W𝓃 

Where Ξ𝜅 =
1+ℍ(𝜉𝜅)

∑ (1+ℍ(𝜉𝜅))
𝔓
𝜅=1

 and ℍ(𝜉𝜅) = ∑ sup (𝜕𝔓, 𝜕∝)
𝔓
𝜇=1
𝜇≠𝜅

 and sup(𝜕𝔓, 𝜕∝) = 1 −

𝑑(𝜕𝔓, 𝜕∝). 

Theorem 2: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … ,𝓃), be a family of LBFNs. 

Then prove that the aggregated value of the LBFPWAA operator is also an LBFN, such as 

𝐿𝐵𝐹𝑃𝑊𝐴𝐴(W1,W2,W3, … ,W𝓃) = ( | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W𝜅
√

|

Ξ𝓃
𝓃
𝜅=1 )

) 

Proof. We will demonstrate this theorem using the principle of mathematical induction. First, 

we  will prove this theorem for 𝓃 = 2, as we know that 

Ξ1W1 = ( | 
𝝈(𝟏−(1−

 ⏉∟ ⋕W1
√

)

Ξ1

)

,  | 
√|
 ⏉∟ ≡W1

√
|

Ξ1) 

and 

Ξ2W2 = ( | 
𝝈(𝟏−(1−

 ⏉∟ ⋕W2
√

)

Ξ2

)

,  | 
√|
 ⏉∟ ≡W2

√
|

Ξ2) 

Then 
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Ξ1W1⨁Ξ2W2 = ( | 
𝝈(𝟏−(1−

 ⏉∟ ⋕W1
√

)

Ξ1

)

,  | 
√|
 ⏉∟ ≡W1

√
|

Ξ1)⨁( | 
𝝈(𝟏−(1−

 ⏉∟ ⋕W2
√

)

Ξ2

)

,  | 
√|
 ⏉∟ ≡W2

√
|

Ξ2)

= ( | 
𝝈(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
2
𝜅=1 )

,  | 
−√(∏ | ⏉∟ ≡W𝜅|

Ξ𝓃2
𝜅=1 )

) 

This implies the given statement is true for 𝓃 = 2. Now, suppose that the given statement is 

true for 𝓃 = 𝓀, such as 

LBFPWAA(W1,W2,W3, … ,W𝓀) = ( | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W𝜅
√

|

Ξ𝜅
𝓀
𝜅=1 )

) 

Now to prove the given statement is true for 𝓃 = 𝓀 + 1, such as 

LBFPWAA(W1,W2,W3, … ,W𝓀, W𝓀+1) = ⨁𝜅=1
𝓀 (Ξ𝜅W𝜅) ⊕ Ξ𝓀+1W𝓀+1 

= ( | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

,  | 
−√(∏ | ⏉∟ ≡W𝜅|

Ξ𝜅𝓀
𝜅=1 )

)

⊕( | 
√(1−(1−

 ⏉∟ ⋕W𝓀+1
√

)

Ξ𝓀+1

)

,  | 
−√(|

 ⏉∟ ≡W𝓀+1
√

|

Ξ𝓀+1

)

) 

= ( | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓀+1
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W𝜅
√

|

Ξ𝓃
𝓀+1
𝜅=1 )

) 

This implies the given statement is true for 𝓃 = 𝓀 + 1. This implies the given statement is 

true for all 𝓃 ≥ 0. 

Property 1: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

Then  

1) If W𝜅 = W for all 𝜅 then LBFPWAA(W1,W2,W3, … ,W𝓃) = W for all 𝜅. 

Proof. Consider  W𝜅 = W, then, 

LBFPWAA(W1,W2,W3, … ,W𝓃) = ( | 
√(1−∏ (1−

 ⏉∟ ⋕W
√

)
Ξ𝜅

𝓃
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W
√

|
Ξ𝜅

𝓃
𝜅=1 )

) 
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= ( | 
√(1−(1−

 ⏉∟ ⋕W
√

)
∑ Ξ𝜅
𝓃
𝜅=1

)

,  | 
−√(|

 ⏉∟ ≡W
√

|
∑ Ξ𝜅
𝓃
𝜅=1

)

) 

= ( | 
√(1−(1−

 ⏉∟ ⋕W
√

))
,  | 

−√|
 ⏉∟ ≡W
√

|
) 

= ( | 
√(
 ⏉∟ ⋕W
√

)
,  | 

−√|
 ⏉∟ ≡W
√

|
), 

2) If  ⏉∟ ⋕W𝜅
≤  ⏉∟ ⋕W′

𝜅
 ,  ⏉∟ ≡W𝜅

≤  ⏉∟ ≡W′
𝜅
 then, LBFPWAA(W1,W2,W3, … ,W𝓃) ≤

LBFPWAA(W′
1,W

′
2,W

′
3, … ,W

′
𝓃). 

Proof. Consider that   |  ⏉∟ ⋕W𝜅 ≤  |  ⏉∟ ⋕W′𝜅
 ,  |  ⏉∟ ≡W𝜅 ≤  |  ⏉∟ ≡W′𝜅

 for all 𝜅, then, 

  | 
𝛔(𝟏−

 ⏉∟ ⋕W𝜅
√

)
≥  | 

√(1−
 ⏉∟ 

⋕W′𝜅

√
)
 

Then, 

 | 
𝝈(∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

≥  | 
√(∏ (1−

 ⏉∟ 
⋕W′𝜅

√
)

Ξ𝜅
𝓃
𝜅=1 )

 

 | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

≥  | 
√(1−∏ (1−

 ⏉∟ 
⋕W′𝜅

√
)

Ξ𝜅
𝓃
𝜅=1 )

 

Similarly, 

 | 
√(1−∏ (1−

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

≥  | 
√(1−∏ (1−

 ⏉∟ 
≡W′𝜅

√
)

Ξ𝜅
𝓃
𝜅=1 )

 

Further, 

 | 
−√(∏ |

 ⏉∟ ⋕W𝜅
√

|𝓃
𝜅=1 )

≥  | 
−√(∏ |

 ⏉∟ 
⋕W′𝜅

√
|𝓃

𝜅=1 )
 

 | 
−√(∏ |

 ⏉∟ ≡W𝜅
√

|𝓃
𝜅=1 )

≥  | 
−√(∏ |

 ⏉∟ 
≡W′𝜅

√
|𝓃

𝜅=1 )
 

Thus, using the score function, we can easily determine our required results, such as 

LBFPWAA(W1,W2, W3, … ,W𝓃) ≤ LBFPWAA(W
′
1,W

′
2,W

′
3, … ,W

′
𝓃). 
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3) If W− = ( | 𝑚𝑖𝑛
𝜅
{ ⏉∟ ⋕W𝜅}

,  | 𝑚𝑎𝑥
𝜅
{ ⏉∟ ≡W𝜅}

) and W+ = ( | 𝑚𝑎𝑥
𝜅
{ ⏉∟ ≡W𝜅}

,  | 𝑚𝑖𝑛
𝜅
{ ⏉∟ ≡W𝜅}

) 

then, 

W− ≤ LBFPWAA(W1,W2,W3, … ,W𝓃) ≤ W
+. 

Definition 11: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

The LBFPOWAA operator is invented and deliberated by: 

LBFPOWAA(W1,W2,W3, … ,W𝓃) =⊕𝜅=1
𝓃 (Ξ𝜅W𝜊(𝜅)) 

= Ξ1W𝜊(1)⨁Ξ2W𝜊(2)⨁Ξ3W𝜊(3)⨁… ⨁Ξ𝓃W𝜊(𝓃) 

Where (𝜊(1), 𝜊(2), 𝜊(3),… , 𝜊(𝓃)) is a permutation of (1,2,3, … . , 𝓃 ) such that W𝜊(𝜅−1) ≥

W𝜊(𝜅) for all 𝜅. 

Theorem 3: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … ,𝓃), be a family of LBFNs. 

Then prove that the aggregated value of the LBFPOWAA operator is also an LBFN, such as 

LBFPOWAA(W1,W2,W3, … ,W𝓃) =

(

 
 
 | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜊(𝜅)

√
)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W𝜊(𝜅)

√
|

Ξ𝓃
𝓃
𝜅=1 )

)

 
 
. 

3.3 LBF Power Geometric Aggregation Operators 
 

In this section, we discuss the geometric operators for LBF information and also discuss their 
properties with the order geometric operator. 

Definition 12: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

The LBFPWGA operator is invented and deliberated by: 

LBFPWGA(W1,W2,W3, … ,W𝓃) =⊗𝜅=1
𝓃 ((W𝜅)

Ξ𝜅) 

= (W1)
Ξ1⨂(W2)

Ξ2⨂(W3)
Ξ3⨂… ⨂(W𝓃)

Ξ𝓃  

Theorem 4: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … ,𝓃), be a family of LBFNs. 

Then prove that the aggregated value of the LBFPWGA operator is also an LBFN, such as 

LBFPWGA(W1,W2,W3, … ,W𝓃) = ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

) 
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Proof. We will demonstrate this theorem using the principle of mathematical induction. 
Initially, we will demonstrate the case for  𝓃 = 2, as it serves as the foundational base for our 
argument. 

(W1)
Ξ1 = ( | 

√((
 ⏉∟ ⋕W1

√
)

Ξ1

)

,  | 
√(−1+(1+

 ⏉∟ ≡W1
√

)

Ξ1

)

) 

 and 

(W2)
Ξ2 = ( | 

√((
 ⏉∟ ⋕W2

√
)

Ξ2

)

,  | 
√(−1+(1+

 ⏉∟ ≡W2
√

)

Ξ2

)

) 

 then 

(W1)
Ξ1⨂(W2)

Ξ2

= ( | 
√(
 ⏉∟ ⋕W1

√
)

Ξ1 ,  | 
√(−1+(1+

 ⏉∟ ≡W1
√

))
)⨂( | 

√(
 ⏉∟ ⋕W2

√
)

Ξ2 ,  | 
√(−1+(1+

 ⏉∟ ≡W2
√

)

Ξ2

)

) 

= ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
2
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
2
𝜅=1 )

) 

Now, suppose the given statement is true for 𝓃 = 𝓀 

LBFPWGA(W1,W2,W3, … ,W𝓀) = ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

) 

Now, to prove a given statement is true for 𝓃 = 𝓀 + 1, such as 

LBFPWGA(W1,W2, W3, … ,W𝓀 ,W𝓀+1) =⊗𝜅=1
𝓀 ((W𝜅)

Ξ𝜅) ⊗ (W𝓀+1)
Ξ𝓀+1 

= ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
𝓀
𝜅=1 )

)

⊗( | 
√((

 ⏉∟ ⋕W𝓀+1
√

)

Ξ𝓀+1

)

,  | 
√(−1+(1+

 ⏉∟ ≡W𝓀+1
√

)

Ξ𝓀+1

)

) 
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= ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝓀+1
𝓀+1
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝓀+1
𝓀+1
𝜅=1 )

) 

This implies the given equation is true for 𝓃 = 𝓀 + 1. 

Property 2: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

Then  

1) If W𝜅 = W for all 𝜅 then LBFPWGA(W1,W2,W3, … ,W𝓃) = W for all 𝜅. 

2) If  |  ⏉∟ ⋕W𝜅 ≤  |  ⏉∟ ⋕W′𝜅
  then, LBFPWGA(W1,W2,W3, … ,W𝓃) ≤

LBFPWGA(W′
1,W

′
2,W

′
3, … ,W

′
𝓃). 

3) If W− = ( | 𝑚𝑖𝑛
𝜅
{ ⏉∟ ⋕W𝜅}

,  | 𝑚𝑎𝑥
𝜅
{ ⏉∟ ≡W𝜅}

) and W+ = ( | 𝑚𝑎𝑥
𝜅
{ ⏉∟ ≡W𝜅}

,  | 𝑚𝑖𝑛
𝜅
{ ⏉∟ ≡W𝜅}

) 

then, W− ≤ LBFPWGA(W1,W2,W3, … ,W𝓃) ≤ W
+. 

Definition 13: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … , 𝓃), be a family of LBFNs. 

The LBFPOWGA operator is invented and deliberated by: 

LBFPOWGA(W1,W2,W3, … ,W𝓃) =⊗𝜅=1
𝓃 (W𝜊(𝜅))

Ξ𝜅
 

= (W𝜊(1))
Ξ1
⊗ (W𝜊(2))

Ξ2
⊗ (W𝜊(3))

Ξ3
⊗… ⊗ (W𝜊(𝓃))

Ξ𝓃
 

Where (𝜊(1), 𝜊(2), 𝜊(3),… , 𝜊(𝓃)) is a permutation of (1,2,3, … . , 𝓃 ) such that W𝜊(𝜅−1) ≥

W𝜊(𝜅) for all 𝜅. 

Theorem 5: Let W𝜅 = ( |  ⏉∟ ⋕W𝜅(𝓍),  |  ⏉∟ ≡W𝜅(𝓍)) , (𝜅 = 1,2,3, … ,𝓃), be a family of LBFNs. 

Then prove that the aggregated value of the LBFPOWGA operator is also an LBFN, such as 

LBFPOWGA(W1,W2,W3, … ,W𝓃) =

(

 
 
 | 
√(∏ (

 ⏉∟ ⋕W𝜊(𝜅)

√
)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
√(−1+∏ (

 ⏉∟ ≡W𝜊(𝜅)

√
)

Ξ𝓃
𝓃
𝜅=1 )

)

 
 
.  

3.4 MABAC Model Based on LBF Power Aggregation Information 
 

This section focuses on the valuation of the MABAC model for LBFSs based on power 

aggregation operators. The MABAC model is an MCDM technique where we find the best solution 

for the uncertain and complex problems in different fields, like supply chain management, risk 

management, healthcare, etc.  This method starts from the construction of the decision matrix. We 

arrange all the alternatives and attributes in the form of rows and columns, respectively. Our result 
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totally depends on the construction of this matrix, because all the steps of the MABAC come from 

this matrix. After arranging all the elements in the decision matrix, we apply the normalization 

technique to the decision matrix data. For this, we apply the scaler and power multiplication of the 

power operational laws on the BF entries. Using these laws, we convert all the data into a fixed scale, 

which is very helpful for finding the best aggregated values. After the calculation of this one, we find 

the different weights with the help of the power techniques and get the best weight vectors, which 

play a fundamental role in the aggregation operators. After this one, we apply the LBFPWA and 

LBFPWG operators on the normalized data and get the steady and flexible aggregated value, which 

is very fruitful for finding the score value. After the calculations of these steps, we apply the score 

value formula on the weighted averaging and geometric values and get the overall performance of 

each alternative. Based on these score values, we give the rank of each alternative and get the best 

alternatives, which represent the best solution for the fault detection of the wheel bearings. Now we 

discuss all these steps in the form of a mathematical representation as follows: 

  Step 1: First, we arrange all the alternatives and attributes of the fault detection techniques 

in the matrix, which is said to be the decision matrix, and it is the initial step of the MABAC method. 

The cost and benefits value of this matrix is represented as: 

ℬ = {
𝜃 = 〈 |  ⏉∟ ⋕W ,  |  ⏉∟ ≡W〉          𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝜃′ = 〈 | √− ⏉∟ ⋕W ,  | −√− ⏉∟ ≡W〉               𝑐𝑜𝑠𝑡𝑠
 

Step 2: With the help of the power and scaler multiplication techniques, we convert all the 

data into a fixed scale. For this, we apply these two normalization techniques to the decision matrix 

data and find the best and most accurate normalized values. The mathematical representation of 

these normalization techniques is: 

𝜆W = ( | 
√(1−(1−

 ⏉∟ ⋕W
√

)
𝜆

)
,  | 

√(−|
 ⏉∟ ≡W
√

|
𝜆

)
) 

W𝜆 = ( | 
√(
 ⏉∟ ⋕W
√

)
𝜆 ,  | 

√(−1+(1+
 ⏉∟ ≡W
√

)
𝜆

)
) 

Step 3: Now apply the LBFPWA and LBFPWG operators on the normalized data and get the 

flexible and consistent aggregated values. These values play a very important role in the distance 

calculation. The mathematical representation of these operators is: 

LBFPWAA(W1,W2,W3, … ,W𝓃) = ⨁𝜅=1
𝓃 (Ξ𝜅W(𝜅))

= ( | 
√(1−∏ (1−

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
−√(∏ |

 ⏉∟ ≡W𝜅
√

|

Ξ𝓃
𝓃
𝜅=1 )

) 
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Compute 
decision matrix

Normalize 
decision matrix

Find 

Weighted 
decision matrix

Evaluate 
Averaging 

decision matrix

Find distance 
decision matrix

Acess the 
apprisal value

Ranking value

Results

and  

LBFPWGA(W1,W2, W3, … ,W𝓃) = ⨂𝜅=1
𝓃 ((W𝜅)

Ξ𝜅)

= ( | 
√(∏ (

 ⏉∟ ⋕W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

,  | 
√(−1+∏ (1+

 ⏉∟ ≡W𝜅
√

)

Ξ𝜅
𝓃
𝜅=1 )

) 

Step 4: This is a very important step in this model. In this step, we find the distance between 

step 2 and step 3. In this way, we calculate how much each alternative is from the ideal boundary. 

The mathematical representation of this distance value is: 

𝒹𝓈𝒹 = {

𝑑(W𝓈,W𝒹), 𝑖𝑓 W𝓈 > W𝒹
0, 𝑖𝑓 W𝓈 = W𝒹

−𝑑(W𝓈,W𝒹), 𝑖𝑓 W𝓈 < W𝒹

 

𝑑(W𝓈,W𝒹) =
ǀ

2√
(| ⏉∟ ⋕W𝜅

−  ⏉∟ ⋕W𝒹
| + | ⏉∟ ≡W𝜅

−  ⏉∟ ≡W𝒹
|)  

Step 5: Based on these distance values, we find the score value with the help of the averaging 

techniques. We take the average of both distance values in the context of the averaging and 

geometric operators. The mathematical representation of the score value is represented as: 

𝒮𝜚 =
1

𝓃
∑𝑑(W𝓈,W𝒹)

𝓃

𝛾=1

 

Step 6: After the calculations of the score values, we give the grade of each alternative based 

on its performance in the whole process of this method. We select the optimal solution based on the 

score values. High score values represent the best choice, and low score values represent the worst 

alternative. Figure 1 is the graphical representation of the MABAC model steps. 

 

 

 

 

 

 

 
 

Figure 1. Graphical Representation of MABAC Model. 
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4. Examination of the Fault Detection Method in Wheel Bearing 

In a rotating machine, wheel bearings play the most crucial role. Due to this, the machine 

parts rotate in a very good and smooth way. When this part is affected for any reason, then the whole 

machine's performance is affected. The identification of the faulty bearing is that it produced more 

noise and vibration. This is the main cause of the energy loss. If this fault is not detected early, then 

it may be the cause of the machine failure. The simple meaning of the fault detection is to identify 

the problems in the bearing before serious damage happens.  The main benefits of early detection 

are that we can save costs and time. Many factories and industries use fault detection machines, 

which are very helpful to avoid unexpected shutdowns. Many industries use this early fault detection 

machine, such as the power plant and transportation industries.  The simple method to detect this 

fault is visual inspection. Visual inspection could not identify the internal bearing faults. For this 

reason, many industries and factories do not depend on visual inspection; they prefer the advanced 

machinery to detect the fault in a very good and accurate way. Many individuals detect this fault due 

to the vibration pattern change, but the industries prefer the acoustic signal analysis techniques. 

They detect the sound signal generated by the faulty bearings. Overall, the fault detection techniques 

protect the vehicle, machine, and workers. The identification techniques increase the life of the 

machine and play the most fundamental role in reducing breakdowns.  These techniques improve 

the reliability and productivity of the industries. Now we explain some alternatives to the fault 

detection techniques.   

1) Vibration Analysis Techniques 

This is a general technique of fault detection of the wheel bearing; many people and 

experts use this technique. When the machine is rotating, it produces the vibration signals. 

The healthy and weak bearing produce the smooth and rough vibration patterns, 

respectively. Faulty bearings create the irregular vibration pattern, while the stable 

bearing produces the best and most regular vibrations. We can identify the bearing 

damage with the help of these vibrations. Many industries and manufacturing companies 

install the sensor near the bearing and collect all the data. With the help of the frequency 

analysis, we can identify the fault locations. These sensors detect the inner as well as the 

outer ball defects. This technique is very helpful for the early detection of faults. This 

technique is highly reliable and widely used in the big manufacturing industries.  

2) Acoustic Emission Analysis 

In this way, we use the sound waves that come from the wheel bearings. When any faults 

exist, then these bearings produce the sound, and often these sound waves are not 

audible to human ears. In this method, very special sensors are installed, which have the 

capacity to capture the acoustic signal. This machine can detect very low faults at the early 

stages and also work very effectively when the machine is running at a very low speed. 

This machine uses the noise filtering technique, which plays a fundamental role in 
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improving the accuracy. This technique is very useful for a high-accuracy and precision 

monitoring system.  

3) Temperature Monitoring Method 

We can also detect the fault with the help of the surface temperature. Best and healthy 

bearing operates in the very best and normal temperature range, but a faulty bearing 

always produces more heat due to the friction. This type of machine only captures the 

irregular heat rise, and it gives a signal when serious damage occurs.  This technique is 

very easy and simple for the implementation of any type of wheel bearing.  This machine 

is very economical and requires the very-low low-cost sensors. These techniques are 

always combined with the vibration analysis techniques. This technique is very helpful to 

prevent overheating and sudden failure due to wheel bearing defects.  

4) Current Signal Analysis 

This is also the best and most modern technique for the early detection of wheel bearing, 

especially in big vehicles and cars. When any bearing has a fault, then this machine 

changes the current pattern and affects the motor load. This fault may cause small changes 

in the current in the form of the waveforms. We can see these changes due to the signal 

processing. Due to this one, we do not need any additional sensors. This method is called 

non-invasive for the fault detection of the wheel bearings. This method is suitable for all 

electrical machines. We can maintain this machine in a very easy way due to its small size. 

We can detect the fault in the wheel bearing in a very good and accurate way, especially 

in an inaccessible bearing system. This technique is very helpful for the motor industry.  

5) Artificial Intelligence (AI)-Based Techniques 

Using the AI, we can detect the early fault in the wheel bearing because it uses a smart 

algorithm for the identification of the fault. We can train the machine on the big data using 

different algorithms and learn the pattern.  Deep learning techniques always deal with 

uncertain and complex data. With the help of machine learning techniques, we can 

automatically classify the different faulty bearing conditions. Due to this, AI techniques 

always reduce human involvement, and machines give an automatic result of the fault in 

the different machinery. AI has the capacity to capture multiple faults at the same time. AI 

plays the most important role in improving the accuracy and reliability of the fault 

detection techniques. Overall, this method represents the future of intelligent and best 

maintenance systems for wheel bearing systems. Table 1 is a representation of the 

advantages of the fault detection method of the wheel bearing.   

Table 1. The representation of properties of the attributes with an example. 

 Attributes Advantages Practical example 

1 Vibration Analysis This one contains high detection 

accuracy and gives reliable results.  

We can use it in wind 

turbines and also use it in 

industrial machinery. 
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2 Acoustic Signal Analysis Provides high-frequency fault 

detection and is best for precision 

monitoring. 

This alternative is used in 

the quality control units. 

3 Temperature 

Monitoring  

We can use it in a very simple and 

easy way.  

We can use this special 

alternative in the motors 

and power plants system.  

4 Current Signal Analysis We can install it in a very easy way 

and get a cost-effective solution. 

This one is used for the 

automated production 

lines. 

5  AI-Based Fault 

Detection 

We get high accuracy with the real-

time monitoring.  

AI-based systems are used 

in smart factories and 

intelligent systems. 

 

Now we discuss the attributes of the above alternatives. The Vibration analysis provides high 

detection accuracy and gives early fault bearing detection. These methods also give different 

operating speeds with strong reliability and high accuracy. Acoustic Emission analysis gives a high-

frequency signal and early micro-fault detection with the best accuracy. These well-known 

techniques also improved the accuracy through noise filtering.  Temperature Monitoring techniques 

are a very easy and cost-effective technique for fault detection. These techniques always track the 

temperature and detect overheating with optimal accuracy. Current signal techniques give cost 

efficiency and have the ability to detect the load variations. AI is the modern system that captures 

automatic fault classification and real-time monitoring capabilities. Now we discuss all these steps in 

the form of a mathematical representation as follows: 

Step 1: First, we arrange all the alternatives and attributes of the fault detection techniques 

in Table 2. This matrix is said to be the decision matrix, and it is the initial step of the MABAC method. 

The data in Table 2 is benefit type, so do not need to normalize the decision matrix. 

Table 2. Representation of a decision matrix. 

 A1 A2 A3 A4 A5 

𝕪ǀ ( | 1,  | −6) ( | 2,  | −6) ( | 2,  | −4) ( | 2,  | −5) ( | 2,  | −1) 

𝕪𝟐 ( | 6,  | −7) ( | 4,  | −5) ( | 3,  | −3) ( | 3,  | −4) ( | 4,  | −2) 

𝕪𝟑 ( | 5,  | −2) ( | 3,  | −2) ( | 2,  | −2) ( | 2,  | −2) ( | 3,  | −2) 

𝕪𝟒 ( | 3,  | −2) ( | 2,  | −2) ( | 1,  | −2) ( | 1,  | −2) ( | 2,  | −2) 

𝕪𝟓 ( | 2,  | −4)  | 3,  | −7 ( | 6,  | −7) ( | 2,  | −7) ( | 1,  | −7) 
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Step 2: With the help of the power and scaler multiplication techniques, we convert all the 

data into a fixed scale. For this, we apply these two normalization techniques to the decision matrix 

data and find the best and most accurate normalized values, see Table 3. 

Table 3. Representation of a weighted decision matrix. 

 A1 A2 A3 A4 A5 

𝕪ǀ ( | 1.875,  | −4.5) ( | 3.5,  | −4.5) ( | 3.5,  | −2) ( | 3.5,  | −3.125) ( | 3.5,  | −0.125) 
𝕪𝟐 ( |  7.5,  | −6.125) ( | 6,  | −3.125) ( | 4.875,  | −1.125) ( | 4.875,  | −2) ( | 6,  | −0.5) 
𝕪𝟑 ( | 6.875,  | −0.5) ( | 4.875,  | −0.5) ( | 3.5,  | −0.5) ( | 3.5,  | −0.5) ( | 4.875,  | −0.5) 
𝕪𝟒 ( | 4.875, 𝔗−0.5) ( | 3.5,  | −0.5) ( | 1.875,  | −0.5) ( | 1.875,  | −0.5) ( | 3.5,  | −0.5) 
𝕪𝟓 ( | 3.5,  | −6.125) ( | 4.875,  | −6.125) ( | 7.5,  | −6.125) ( | 3.5,  | −6.125) ( | 1.875,  | −6.125) 

 

Step 3: Now apply the LBFPWA and LBFPWG operators on the normalized data and get the 

flexible and consistent aggregated values, see Table 4. 

Table 4. LBFP aggregated operator. 

 𝐋𝐁𝐅𝐏𝐖𝐀𝐀 𝐋𝐁𝐅𝐏𝐖𝐆𝐀 

𝕪ǀ ( | 5.7834,  | −2.1351) ( | 4.3634,  | −4.3195) 

𝕪𝟐 ( | 4.692446,  | −1.85336) ( | 4.449645,  | −3.52103) 

𝕪𝟑 ( | 4.830067,  | −1.17354) ( | 3.715082,  | −2.32031) 

𝕪𝟒 ( | 3.559131,  | −1.55726) ( | 3.3116,  | −2.96064) 

𝕪𝟓 ( | 4.291183,  | −0.56119) ( | 3.792223,  | −1.93521) 

 

Step 4: This is a very important step in this model. In this step, we find the distance between 

step 2 and step 3. In this way, we calculate how much each alternative is from the ideal boundary, 

see Table 5. 

Table 5. Representation of distance measure. 

 A1 A2 A3 A4 A5 

𝕪ǀ 0.392086 0.16681 0.239943 0.120539 0.134783 0.033462 0.101679 0.022047 0.076711 0.131402 

𝕪𝟐 0.35665 0.308877 0.161199 0.121649 0.005842 0.147202 0.109913 0.157752 0.110625 0.227686 

𝕪𝟑 0.170414 0.39569 0.095995 0.215399 0.125225 0.127212 0.0697750 0.165564 0.040313 0.157374 

𝕪𝟒 0.158975 0.27069 0.159113 0.248167 0.226788 0.228775 0.171337 0.243578 0.053273 0.107694 

𝕪𝟓 0.392086 0.16681 0.278387 0.189333 0.476337 0.47435 0.289179 0.209547 0.49875 0.381689 

 

Step 5: Based on these distance values, we find the score value with the help of the averaging 

techniques. We take the average of both distance values in the context of the averaging and 

geometric operators, see Table 6, and also listed in Figure 2. 
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1 2 3 4 5

LBFPWA 0.294042 0.186927 0.193795 0.148377 0.155934

LBFPWG 0.261775 0.179017 0.202 0.159698 0.201223
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Table 6. Score values. 

 Score values 

A1 0.294042 0.261775 

A2 0.186927 0.179017 

A3 0.193795 0.2022 

A4 0.148377 0.159698 

A5 0.155934 0.201223 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graphical representation of the data in Table 6. 

Step 6: After the calculations of the score values, we give the grade of each alternative based 

on its performance in the whole process of this method. We select the optimal solution based on the 

score values. High score values represent the best choice, and low score values represent the worst 

alternative, see Table 7. 

Table 7. Ranking values information. 

Methods Ranking values 

𝑴𝑨𝑩𝑨𝑪 − 𝐋𝐁𝐅𝐒𝐏𝐖𝐀 𝐴1 > 𝐴3 > 𝐴2 > 𝐴5 > 𝐴4 

𝐌𝐀𝐁𝐀𝐂 − 𝐋𝐁𝐅𝐒𝐏𝐖𝐆 𝐴1 > 𝐴3 > 𝐴5 > 𝐴2 > 𝐴4 

 

The most valid decision is 𝐴1, and the worst one is 𝐴4 according to the technique of the 

MABAC model based on power aggregation operators. Further, we check the validity of the derived 

theory based on the decision-making procedure without the MABAC model. Therefore, the 

aggregated values are listed in Table 8. 



Knowledge and Decision Systems with Applications 

Volume 2, (2026) 332-357 

352 
 
 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

SC
O

R
E

 V
A

L
U

E

LBFPWA LBFPWG

Table 8. Without the MABAC Aggregation operator. 

 𝐋𝐁𝐅𝐒𝐏𝐖𝐀 𝐋𝐁𝐂𝐅𝐒𝐏𝐖𝐆 

A1 ( | 3.789049,  | −4.13291) ( | 2.792669,  | −5.66309) 

A2 ( | 2.85603,  | −3.85057) ( | 2.701048,  | −5.07006) 

A3 ( | 2.964182,  | −3.06403) ( | 2.238706,  | −3.97555) 

A4 ( | 2.039551,  | −3.52961) (( | 1.89509,  | −4.59286)) 

A4 ( | 2.552933,  | −2.11885) ( | 2.246665,  | −3.35371) 

 

Thus, using the technique score function, the score values are listed in Table 9 and also 

listed in Figure 3. 

Table 9. Score value for data for Table 7. 

 𝐋𝐁𝐅𝐒𝐏𝐖𝐀𝐀 𝐋𝐁𝐅𝐒𝐏𝐖𝐆𝐀 

A1 0.478509 0.0400 

A2 0.437841 0.351937 

A3 0.493759 0.391447 

A4 0.406872 0.331389 

A5 0.52713 0.43081 

 

Based on the data in Table 9, the ranking values are listed in Table 10. 

Table 10. Ranking information for Table 8. 

Methods Ranking values 

𝐋𝐁𝐅𝐒𝐏𝐖𝐀 𝐴5 > 𝐴3 > 𝐴1 > 𝐴2 > 𝐴4 

                   𝐋𝐁𝐅𝐒𝐏𝐖𝐆 𝐴5 > 𝐴3 > 𝐴2 > 𝐴4 >  𝐴1 

 

The best decision is 𝐴5, and the worst one is different because of ambiguity and problems. 
Further, we deliberated the validity and effectiveness of the invented theory based on the 
comparative analysis between proposed and existing ranking values to state the art of the derived 
theory. 
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Figure 3. Graphical representation of score value from the data in Table 9. 

5. Comparative Analysis 
 

This section concentrates on the valuation of the comparative techniques or assessment by 
using the data in Table 2. The comparative assessment is an essential model for the valuation of the 
supremacy and validity of the proposed theory. For this, we arranged some existing models based on 
fuzzy models and their extensions to compare the ranking values of the existing models with the 
ranking values of the proposed theory. Therefore, we considered the following: Gul [19] constructed 
a novel VIKOR approach under an extended bipolar fuzzy enviro≡ent for handling multi-criteria 
decision-making (MCDM) problems. Gul et al. [20] established an extended bipolar fuzzified approach 
under bipolar fuzzy preference relations and discussed its applications in a decision-making 
enviro≡ent. Dalkılıc and Demirtas [21] constructed a novel decision-making algorithm under an 
extended bipolar domain for medical diagnosis. Alkouri et al. [22] developed multi attribute decision 
making approach under an extended bipolar fuzzy domain to find an optimal nutrition program. 
Ahmad et al. [23] constructed a novel decision-making approach under a generalized bipolar fuzzy 
enviro≡ent for sustainable energy solutions. Akram and Akmal [24] extended the application of BPS 
to the graph structural enviro≡ent. Finally, using the data in Table 2, the comparative assessment is 
listed in Table 11. 

 
Table 11. Comparative Analysis 

Method Score value Ranking values 

Gul [19] No No 

Gul et al.  [20] No No 

Dalkılıc and Demirtas [21] No No 

Ahmed et al. [23] No No 

Akram and Akmal [24] No No 

MABAC-LBFSPWAA 0.2940,0.1869,0.1937,0.1483,0.1559 𝐴1 > 𝐴3 > 𝐴2 > 𝐴5 > 𝐴4 

MABAC-LBFSPWGA 0.2617,0.1790,0.2022,0.1596,0.2012 𝐴1 > 𝐴3 > 𝐴5 > 𝐴2 > 𝐴4 

LBFSPWA 0.4785, 0.4378, 0.4937, 0.4068, 0.5271 𝐴5 > 𝐴3 > 𝐴1 > 𝐴2 > 𝐴4 

LBFSPWG 0.0400, 0.3519, 0.3914, 0.3313, 0.4308 𝐴5 > 𝐴3 > 𝐴2 > 𝐴4 >  𝐴1 

 

The most valid decision is 𝐴1, and the worst one is 𝐴4 according to the technique of the 
MABAC model based on power aggregation operators. But using just the decision-making model, our 
best decision is 𝐴5, and the worst one is different because of ambiguity and problems. The existing 
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techniques are not able to evaluate the data in Table 2, because they all cover the special cases of 
the proposed theory. 
 
6. Conclusions 
 

 
Finally, we concluded that the proposed work is very effective and reliable because of the validity 

and integration of the existing models. The major valuation of the proposed manuscript is listed as: 

1) This study constructs the notation of linguistic bipolar fuzzy sets and discusses its basic 

properties. 

2) This study developed a generalized idea of power aggregation operators based on linguistic 

bipolar fuzzy data. 

3) This study invented an advanced notation of the MABAC model under a linguistic bipolar fuzzy 

enviro≡ent. 

4) This study integrated the advanced idea of power aggregation operators with the MABAC 

model and applied it to a real-world problem. 

5) This study compared the results of the proposed model with some related current models to 

check its reliability and accuracy. 

In this future, we will work on the valuation of the weighted aggregated sum product assessment 
model based on LBFSs and also discuss their application in green supply chain, hydrogen energy, road 
signal systems, neural networks, and decision-making techniques to evaluate the supremacy and 
validity of the invented theory. 
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